Advertisement

International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 924–931 | Cite as

Investigation of Biodiesel Through Photopyroelectric and Dielectric-Constant Measurements as a Function of Temperature: Freezing/Melting Interval

  • E. B. Zanelato
  • F. A. L. Machado
  • A. B. Rangel
  • A. O. Guimarães
  • H. Vargas
  • E. C. da Silva
  • A. M. Mansanares
Article
  • 139 Downloads

Abstract

Biodiesel is a promising option for alternative fuels since it derives from natural and renewable materials; it is biodegradable and less polluting than fossil fuels. A gradual replacement of diesel by biodiesel has been adopted by many countries, making necessary the investigation of the physical properties of biodiesel and of its mixture in diesel. Photothermal techniques, specifically the photopyroelectric technique (PPE), have proved to be suitable in the characterization of biodiesel and of its precursor oils, as well as of the biodiesel/diesel mixtures. In this paper, we investigate thermal and electrical properties of animal fat-based biodiesel as a function of temperature, aiming to characterize the freezing/melting interval and the changes in the physical properties from the solid to the liquid phase. The samples were prepared using the transesterification method, by the ethylic route. Optical transmittance experiments were carried out in order to confirm the phase transition interval. Solid and liquid phases present distinct thermal diffusivities and conductivities, as well as dielectric constants. The PPE signal amplitude is governed by the changes in the thermal diffusivity/conductivity. As a consequence, the amplitude of the signal becomes like a step function, which is smoothed and sometimes delayed by the nucleation processes during cooling. A similar behavior is found in the dielectric constant data, which is higher in the liquid phase since the molecules have a higher degree of freedom. Both methods (PPE/dielectric constant) proved to be useful in the characterization of the freezing/melting interval, as well as to establish the distinction in the physical properties of solid and liquid phases. The methodology allowed a discussion of the cloud point and the pour point of the samples in the temperature variation interval.

Keywords

Animal fat-based biodiesel Dielectric constant Photopyroelectric technique Thermal diffusivity 

Notes

Acknowledgments

Authors would like to thank the Brazilian funding agencies FAPERJ, CNPqn, and CAPES for supporting this work. Also, thanks to Dr. Marcelo Silva Sthel for providing kindly the sample used in this work.

References

  1. 1.
    G. Knothe, J.V. Gerpen, J. Krahl, L.P. Ramos, The Biodiesel Handbook (AOCS Press, Champaign, 2005)CrossRefGoogle Scholar
  2. 2.
    H. Vargas, L.C. Miranda, Phys. Rep. 161, 43 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    A.O. Guimarães, E.C. da Silva, A.M. Mansanares, A.C.R.N. Barboza, M. Paoli, in 14th International Thermo Conference (Budapeste, Hungary, 2005)Google Scholar
  4. 4.
    S.M. Lima, T. Izida, M.S. Figueiredo, L.H.C. Andrade, P.V. Del Ré, N. Jorge, E. Buba, F. Aristone, Eur. Phys. J. Spec. Top. 153, 535 (2008)CrossRefGoogle Scholar
  5. 5.
    M.P.P. Castro, A.A. Andrade, R.W.A. Franco, P.C.M.L. Miranda, M. Sthel, H. Vargas, R. Constantino, M.L. Baesso, Chem. Phys. Lett. 411, 18 (2005)ADSCrossRefGoogle Scholar
  6. 6.
    J.R.D. Pereira, A.J. Palangana, A.C. Bento, M.L. Baesso, A.M. Mansanares, E.C. da Silva, Rev. Sci. Instrum. 74, 822 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    F.K.M. Al-asfoor, W.M.M. Yunus, A. Zakaria, M.M. Moksin, N.J. Ridha, L.Y.C. Josephine, Am. J. Eng. Appl. Sci. 1, 200 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Coufal, Appl. Phys. Lett. 44, 59 (1984)ADSCrossRefGoogle Scholar
  9. 9.
    F.A.L. Machado, E.B. Zanelato, A.O. Guimarães, E.C. da Silva, A.M. Mansanares, Int. J. Thermophys. 33, 1848 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    M. Chirtoc, G. Miháilescu, Phys. Rev. B 40, 9606 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    D. Dardalat, C. Neamtu, Meas. Sci. Technol. 17, 3250 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A. Mandelis, M. Zver, J. Appl. Phys. 57, 4421 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    D. Dadarlat, M. Chirtoc, C. Nematu, R.M. Cândea, D. Bicanic, Phys. Status Solidi A 121, K231 (1990)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Pereira, E.C. da Silva, A.M. Mansanares, L.C.M. Miranda, in XI International Conference on Photoacoustic and Photothermal Phenomena (Kyoto, Japan, 2000), p. 5 [XI ICPPP Abstract]Google Scholar
  15. 15.
    Agilent Technologies, 2006, 2011, 2012, published in USA, June 14, 2012Google Scholar
  16. 16.
    M.S. Venkatesh, G.S.V. Raghavan, Biosyst. Eng. 88, 1 (2004)CrossRefGoogle Scholar
  17. 17.
    H. Lizhi, K. Toyoda, I. Ihara, J. Food Eng. 88, 151 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Delencos, M. Chirtoc, A. Hadj Sahraoui, C. Kolinsky, M. Buisine. Rev. Sci. Instrum. 73, 2773 (2002)Google Scholar
  19. 19.
    A.O. Guimarães, F.A.L. Machado, E.B. Zanelato, M.S. Sthel, E.C. da Silva, D.A.G. Aranda, Int. Rev. Chem. Eng. 1, 623 (2009)Google Scholar
  20. 20.
    U. Zammit, M. Marinelli, F. Mercuri, S. Paoloni, F. Scudieri, Rev. Sci. Instrum. 82, 121101 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    J.V. Quagliano, Chemistry (Prentice-Hall Inc., Upper Saddle River, 1973)Google Scholar
  22. 22.
    L. Royon, G. Guiffant, Rev. Energy Convers. Manag. 42, 2155 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. B. Zanelato
    • 1
  • F. A. L. Machado
    • 1
  • A. B. Rangel
    • 1
  • A. O. Guimarães
    • 1
  • H. Vargas
    • 1
  • E. C. da Silva
    • 1
  • A. M. Mansanares
    • 2
  1. 1.Laboratório de Ciências FísicasUniversidade Estadual do Norte Fluminense Darcy Ribeiro, UENFCampos dos GoytacazesBrazil
  2. 2.Instituto de Física Gleb WataghinUniversidade Estadual de Campinas, UNICAMPCampinasBrazil

Personalised recommendations