Advertisement

International Journal of Thermophysics

, Volume 35, Issue 12, pp 2341–2351 | Cite as

Photoacoustic Signal Formation in Heterogeneous Multilayer Systems with Piezoelectric Detection

  • Mykola Isaiev
  • Dmytro Andrusenko
  • Alona Tytarenko
  • Andrey Kuzmich
  • Vladimir Lysenko
  • Roman Burbelo
Article

Abstract

A new efficient model describing photoacoustic (PA) signal formation with piezoelectric detection is reported. Multilayer sandwich-like systems: heterogeneous studied structure—buffer layer—piezoelectric transducers are considered. In these systems, the buffer layer is used for spatial redistribution of thermoelastic force moments generated in the investigated structure. Thus, mechanical properties of this layer play a crucial role to ensure perfect control of the detected voltage formed on a piezoelectric transducer by contribution of different regions of the studied structure. In particular, formation of the voltage signal strongly depends on the point at which the thermoelastic source is applied. Therefore, use of relatively simple linear Green’s functions introduced in frames of the Kirchhoff–Love theory is chosen as an efficient approach for the PA signal description. Moreover, excellent agreement between the theoretical model and measured results obtained on a heterogeneous “porous silicon-bulk Si substrate” structure is stated. Furthermore, resolving of the inverse problem with fitting of the experimental curves by the developed model allows reliable evaluation of the thermal conductivity of the nanostructured porous silicon layer.

Keywords

Multilayer structures Photoacoustic Piezoelectric detection Porous silicon Semiconductor structures 

References

  1. 1.
    A.I. Tytarenko, D.A. Andrusenko, A.G. Kuzmich, I.V. Gavril’chenko, V.A. Skryshevskii, M.V. Isaiev, R.M. Burbelo, Tech. Phys. Lett. 40, 188 (2014). doi: 10.1134/S1063785014030146 ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Zuccon, A. Mandelis, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 5 (1988). doi: 10.1109/58.4142 CrossRefGoogle Scholar
  3. 3.
    W. Jackson, N.M. Amer, J. Appl. Phys. 51, 3343 (1980). doi: 10.1063/1.328045 ADSCrossRefGoogle Scholar
  4. 4.
    M. Malinski, J. Zakrzewski, K. Strzalkowski, Int. J. Thermophys. 28, 299 (2007). doi: 10.1007/s10765-006-0126-2 ADSCrossRefGoogle Scholar
  5. 5.
    M. Malinski, J. Zakrzewski, K. Strzalkowski, J. Phys. Conf. Ser. 214, 012069 (2010). doi: 10.1088/1742-6596/214/1/012069 ADSCrossRefGoogle Scholar
  6. 6.
    K. Strzalkowski, J. Zakrzewski, M. Malinski, Int. J. Thermophys. 34, 691 (2013). doi: 10.1007/s10765-012-1382-y ADSCrossRefGoogle Scholar
  7. 7.
    I.V. Blonskij, V.A. Tkhoryk, M.L. Shendeleva, J. Appl. Phys. 79, 3512 (1996). doi: 10.1063/1.361401 ADSCrossRefGoogle Scholar
  8. 8.
    C. Gao, Y. Gao, Q. Sun, Y. Zhou, Z. Wang, Chin. J. Lasers 36, 426 (2009)CrossRefGoogle Scholar
  9. 9.
    L. Sun, S. Zhang, Y. Zhao, Z. Li, L. Cheng, Rev. Sci. Instrum. 74, 834 (2003). doi: 10.1063/1.1520310 ADSCrossRefGoogle Scholar
  10. 10.
    Y.-F. Bi, Y.-F. Wang, C.-M. Gao, W. Li, B.-X. Zhao, Yadian Yu Shengguang/Piezoelectrics and Acoustooptics 30(5), 601 (2008)Google Scholar
  11. 11.
    C. Gao, S. Zhang, Y. Chen, X. Shui, Y. Yang, Chin. Sci. Bull. 49, 2115 (2004). doi: 10.1007/BF03185774 CrossRefGoogle Scholar
  12. 12.
    M.L. Shendeleva, Proc. SPIE 3359, 484 (1998). doi: 10.1117/12.306266 ADSCrossRefGoogle Scholar
  13. 13.
    Q. Sun, C. Gao, B. Zhao, H. Rao, Proc. SPIE 7276, 72761N-1 (2009). doi: 10.1117/12.823910 Google Scholar
  14. 14.
    J. Zakrzewski, M. Malinski, K. Strzalkowski, D. Madaj, F. Firszt, S. Legowski, H. Meczynska, Int. J. Thermophys. 33, 733 (2012). doi: 10.1007/s10765-012-1199-8 ADSCrossRefGoogle Scholar
  15. 15.
    S. Alekseev, D. Andrusenko, R. Burbelo, M. Isaiev, A. Kuzmich, J. Phys. Conf. Ser. 278, 012003 (2011). doi: 10.1088/1742-6596/278/1/012003 ADSCrossRefGoogle Scholar
  16. 16.
    D.A. Andrusenko, I.Ya. Kucherov, Tech. Phys. 43, 67 (1998). doi: 10.1134/1.1258938
  17. 17.
    D.A. Andrusenko, I.Ya. Kucherov, Tech. Phys. 44, 1397 (1999). doi: 10.1134/1.1259558
  18. 18.
    Q. Sun, C. Gao, B. Zhao, Y. Bi, Int. J. Thermophys. 31, 1157 (2010). doi: 10.1007/s10765-010-0769-x ADSCrossRefGoogle Scholar
  19. 19.
    L. Yan, Ch. Gao, B. Zhao, X. Ma, N. Zhuang, H. Duan, Int. J. Thermophys. 33, 2001 (2012). doi: 10.1007/s10765-012-1253-6
  20. 20.
    Q.-M. Sun, C.-M. Gao, B.-X. Zhao, H.-B. Rao, Chin. Phys. B 19, 118103 (2010). doi: 10.1088/1674-1056/19/11/118103 ADSCrossRefGoogle Scholar
  21. 21.
    B. Zhao, Y. Wang, C. Gao, T. Liu, Q. Sun, Int. J. Thermophys. 34, 1513 (2012). doi: 10.1007/s10765-012-1327-5 ADSCrossRefGoogle Scholar
  22. 22.
    J. N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd edn., Series in Systems and Control (CRC Press, Boca Raton, FL, 2006), p. 568Google Scholar
  23. 23.
    S.P. Timoshenko, J.N. Goodier, Theory of Elasticity, 3rd edn. (McGraw-Hill, New York, 1987)Google Scholar
  24. 24.
    A. Rosencwaig, A. Gersho, Science 190, 556 (1975). doi: 10.1126/science.190.4214.556 ADSCrossRefGoogle Scholar
  25. 25.
    D. Andrusenko, M. Isaiev, A. Kuzmich, V. Lysenko, R. Burbelo, Nanoscale Res. Lett. 7, 411 (2012). doi: 10.1186/1556-276X-7-411 ADSCrossRefGoogle Scholar
  26. 26.
    N.C. Fernelius, J. Appl. Phys. 51, 650 (1980). doi: 10.1063/1.327320 ADSCrossRefGoogle Scholar
  27. 27.
    Piezoelectric Materials (PI Ceramic), http://piceramic.com/products/piezoelectric-materials.html. Accessed 03 April 2014
  28. 28.
    R. Burbelo, D. Andrusenko, M. Isaiev, A. Kuzmich, Arch. Metall. Mater. 56, 1157 (2011). doi: 10.2478/v10172-011-0129-2 Google Scholar
  29. 29.
    S. Perichon, V. Lysenko, Ph. Roussel, B. Remaki, B. Champagnon, D. Barbier, P. Pinard, Sens. Actuator 10, 7 (2000). doi: 10.1016/S0924-4247(00)00327-7
  30. 30.
    G. Gesele, J. Linsmeier, V. Drach, J. Fricke, R. Arens-Fischer, J. Phys. D 30, 2911 (1997). doi: 10.1088/0022-3727/30/21/001 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mykola Isaiev
    • 1
  • Dmytro Andrusenko
    • 1
  • Alona Tytarenko
    • 1
  • Andrey Kuzmich
    • 1
  • Vladimir Lysenko
    • 2
  • Roman Burbelo
    • 1
  1. 1.Taras Shevchenko National University of KyivKyivUkraine
  2. 2.Institut des Nanotechnologies de Lyon (INL), UMR-5270, CNRS, INSA de Lyon, Universite de LyonVilleurbanneFrance

Personalised recommendations