International Journal of Thermophysics

, Volume 35, Issue 3–4, pp 648–656 | Cite as

Correlation Between Immersion Profile and Measured Value of Fixed-Point Temperature

  • O. S. Shulgat
  • V. M. Fuksov
  • A. G. Ivanova
  • S. F. Gerasimov
  • A. I. Pokhodun


Assessment of thermal immersion effects in the melting and freezing points defined by the International Temperature Scale of 1990 is one of the vital issues of modern thermometry. In documents of the Consultative Committee for Thermometry, the deviation of the experimental immersion profile from the theoretical value of the hydrostatic effect at a height of about 3 cm to 5 cm from the thermometer well bottom is used for the estimation of the uncertainty due to unwanted thermal effects. This estimation assumes the occurrence of solely the hydrostatic effect all along the height of the well inner wall. Real distortions of the temperature gradient at the bottom and at the top part of the well caused by the change of heat-exchange conditions are not taken into account. To define more precisely the temperature gradient along the height of the well, a miniature PRT with a 30 mm sensitive element and a sheath length and diameter of about 60 mm and 6 mm, respectively, were used. Also, the measurements of fixed-points temperature at noticeably different slopes of immersion profiles due to variations of the thermometer heat exchange and phase transition realization conditions were produced by means of a standard platinum resistance thermometer (SPRT). The measurements were carried out at the tin and zinc freezing points. The immersion curves measured with a miniature thermometer demonstrated an increase of the temperature during its lifting in the first 1 cm to 3 cm above the bottom of the well. The measurement results at the zinc freezing point by means of the SPRT have not confirmed the correlation between the immersion curves, the received value of the Zn freezing temperature, and the estimation of its uncertainty.


Fixed points Immersion profile Tin Zinc 


  1. 1.
    E. Renaot, T. Hermier, M. Valin, G. Bonnier, Metrologia 44, 03001 (2007). doi: 10.1088/0026-1394/44/1A/03001 CrossRefADSGoogle Scholar
  2. 2.
    D.R. White, M. Ballico, V. Chimenti, S. Duris, E. Filipe, A.G. Ivanova, A. Kartal Dogan, E. Mendez-Lango, C. Meyer, F. Pavese, A. Peruzzi, E. Renaot, S. Rudtsch, G.K. Yamazawa, “Uncertainties in the Realisation of the SPRT Subranges of the ITS-90,” Document CCT/08-19/rev (BIPM, Sèvres Cedex, 2009)Google Scholar
  3. 3.
    G.F. Strouse, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić, L.G. Bermanec, T. Veliki, T. Staštić (FSB/LPM, Zagreb, 2004), pp. 879–884Google Scholar
  4. 4.
    A.G. Ivanova, M.Yu. Abasov, S.F. Gerasimov, A.I. Pokhodun, in Temperature: Its Measurement and Control in Science and Industry, Proceedings of the Ninth International Temperature Symposium, vol. 8, Los Angeles, 2012, AIP Conference Proceedings 1552, ed. by C. W. Meyer (2013), pp. 243–248. doi: 10.1063/1.4819547
  5. 5.
    A.G. Ivanova, A.U. Ilin, Meas. Technol. 47, 1096 (2005)CrossRefGoogle Scholar
  6. 6.
    A.G. Ivanova, A.I. Pokhodun, “Analytical and Experimental Study of the Factors Determining the Temperature Gradient During the Calibration at the ITS-90 Fixed Points,” Document CCT/96-2 (BIPM, Sèvres Cedex, 1996)Google Scholar
  7. 7.
    V. Batagelj, “Thermal Drain Along the Thermometer Well,” Document CCT/05-01 (BIPM, Sèvres Cedex, 2005)Google Scholar
  8. 8.
    M. Stock, S. Solve, D. del Campo, V. Chimenti, E. Méndez-Lango, H. Liedber, P.P.M. Steur, P. Marcarino, R. Dematteis, E. Filipe, I. Lobo, K.H. Kang, K.S. Gam, Y.-G. Kim, E. Renaot, G. Bonnier, M. Valin, R. White, T.D. Dransfield, Y. Duan, Y. Xiaoke, G. Strouse, M. Ballico, D. Sukkar, M. Arai, A. Mans, M. de Groot, O. Kerkhof, R. Rusby, J. Gray, D. Head, K. Hill, E. Tegeler, U. Noatsch, S. Duris, H.Y. Kho, S. Ugur, A. Pokhodun, S.F. Gerasimov, Metrologia 43, 03001 (2006). doi: 10.1088/0026-1394/43/1A/03001 CrossRefADSGoogle Scholar
  9. 9.
    S. Rudtsch, A. Aulich, C. Monte, in Temperature: Its Measurement and Control in Science and Industry, Proceedings of the Ninth International Temperature Symposium, vol. 8, Los Angeles, 2012, AIP Conference Proceedings 1552, ed. by C.W. Meyer (2013), pp. 265–270. doi: 10.1063/1.4819551
  10. 10.
    J.V. McAllan, J. Cryst. Growth 12, 46 (1972)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • O. S. Shulgat
    • 1
  • V. M. Fuksov
    • 1
  • A. G. Ivanova
    • 1
  • S. F. Gerasimov
    • 1
  • A. I. Pokhodun
    • 1
  1. 1.D.I. Mendeleev Institute for MetrologySaint PetersburgRussia

Personalised recommendations