Advertisement

International Journal of Thermophysics

, Volume 36, Issue 5–6, pp 910–918 | Cite as

Photoacoustic Spectroscopy of BiOCl Photocatalyst Powder

  • Z. J. Chen
  • J. W. Fang
  • S. Y. Zhang
Article

Abstract

Photoacoustic spectroscopy (PAS) was used for the first time to investigate the optical properties and photocatalysis reaction of BiOCl powder. The results of PAS measurements showed that the photoacoustic (PA) amplitude increased gradually in the visible light region and the white BiOCl powder became black when the measurements were repeated many times. Further studies showed that the occurrence of ultraviolet (UV) light-induced oxygen vacancies was the reason for the formation of black BiOCl and increasing visible light absorption. PAS also showed that oxygen vacancies only appeared when the white BiOCl powder was irradiated by UV light with a wavelength smaller than the absorption threshold wavelength. The formation of oxygen vacancies under UV irradiation was focused in the initial 0.5 h. Moreover, photochemical reactions of RhB dye absorbed on the BiOCl powder were studied by means of PAS. The results showed that the oxygen vacancy formation and photocatalytic reaction occurred simultaneously under UV excitation.

Keywords

BiOCl powder Oxygen vacancy Photoacoustic spectroscopy Photochemical reaction 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11304286, 11274279, and 11174255) and Scientific Research Fund of Zhejiang Provincial Education Department (Grant No. Y201226257).

References

  1. 1.
    A. Fujishima, X. Zhang, T.D. Tryk, Surf. Sci. Rep. 63, 515 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    H. An, Y. Du, T. Wang, C. Wang, W. Hao, J. Zhang, Rare Met. 27, 243 (2008)CrossRefGoogle Scholar
  3. 3.
    M.A. Henderson, Surf. Sci. Rep. 66, 185 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K.L. Zhang, C.M. Liu, F.Q. Huang, C. Zheng, W.D. Wang, Appl. Catal. B 68, 125 (2006)CrossRefGoogle Scholar
  5. 5.
    W. Wang, F. Huang, X. Lin, Scr. Mater. 56, 669 (2007)CrossRefGoogle Scholar
  6. 6.
    S.Y. Chai, Y.J. Kim, M.H. Jung, A.K. Chakraborty, D. Jung, W.I. Lee, J. Catal. 262, 144 (2009)CrossRefGoogle Scholar
  7. 7.
    X. Chang, G. Yu, J. Huang, Z. Li, S. Zhu, P. Yu, C. Cheng, S. Deng, G. Ji, Catal. Today 153, 193 (2010)CrossRefGoogle Scholar
  8. 8.
    X. Chen, L. Liu, Y.Y. Peter, S.S. Mao, Science 331, 746 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    D. Li, H. Haneda, N.K. Labhsetwar, S. Hishita, N. Ohashi, Chem. Phys. Lett. 401, 579 (2005)ADSCrossRefGoogle Scholar
  10. 10.
    C. Haisch, Meas. Sci. Technol. 23, 012001 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    N. Murakami, O.O. Prieto Mahaney, T. Torimoto, B. Ohtani, Chem. Phys. Lett. 426, 204 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    T. Toyoda, I. Tsuboya, Rev. Sci. Instrum. 74, 782 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    L. Ye, L. Zan, L. Tian, T. Peng, J. Zhang, Chem. Commun. 47, 6951 (2011)CrossRefGoogle Scholar
  14. 14.
    T. Iwasaki, S. Oda, H. Kamada, K. Honda, J. Phys. Chem. 84, 1060 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.College of Mathematics, Physics and Information EngineeringZhejiang Normal UniversityJinhua China
  2. 2.State Key Laboratory of Acoustics, Institute of AcousticsChinese Academy of SciencesBeijingChina
  3. 3.Laboratory of Modern Acoustics of MOENanjing UniversityNanjingChina

Personalised recommendations