International Journal of Thermophysics

, Volume 34, Issue 12, pp 2276–2285 | Cite as

Relaxation Dynamics of Non-Power-Law Fluids



The relaxation of non-Newtonian liquids with non-power-law rheology on partially wetted surfaces is rarely investigated. This study assesses the relaxation behavior of 14 partial wetting systems with non-power-law fluids by sessile drop method. These systems are two carboxymethylcellulose sodium solutions on two kinds of slides, cover glass, and silicon wafer surfaces; three polyethylene glycol (PEG400) + silica nanoparticle suspensions on polymethyl methacrylate and polystyrene surfaces. The dynamic contact angle and moving velocity of contact line relationship \((\theta _\mathrm{D}-U)\) data for relaxation drops of the 14 tested systems demonstrate a power-law fluid-like behavior, and the equivalent power exponent \(n_\mathrm{e}\) for a certain fluid on different solid substrates are uniform. By analyzing the relationship between the equivalent power exponent and shear rate, it is proposed that a fluid regime with shear rates of a few tens of s\(^{-1}\) controls relaxation dynamics.


Contact angle Non-Newtonian Non-power law Power exponent Relaxation 



This project was supported by the NSFC (Nos. 51206093, 21176133, and 51321002).


  1. 1.
    D. Bonn, J. Eggers, J. Indekeu, J. Meunier, E. Rolley, Rev. Mod. Phys. 81, 739 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    L. Leger, J.F. Joanny, Rep. Prog. Phys. 55, 431 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    O.V. Voinov, Encyclopedia of Surface and Colloid Science (Marcel Dekker, New York, 2002), pp. 1546–59Google Scholar
  4. 4.
    T.D. Blake, J. Colloid Interface Sci. 299, 1 (2006)CrossRefGoogle Scholar
  5. 5.
    P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004)CrossRefGoogle Scholar
  6. 6.
    V.M. Starov, M.G. Velarde, C.J. Radke, Wetting and Spreading Dynamics (CRC Press, Boca Raton, FL, 2007)MATHGoogle Scholar
  7. 7.
    A. Carré, F. Eustache, Langmuir 16, 1936 (2000)CrossRefGoogle Scholar
  8. 8.
    S.I. Betelu, M.A. Fontelos, Appl. Math. Lett. 16, 1315 (2000)MathSciNetCrossRefGoogle Scholar
  9. 9.
    V.M. Starov, A.N. Tyatyushkin, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 257, 284 (2003)CrossRefGoogle Scholar
  10. 10.
    S.I. Betelu, M.A. Fontelos, Math. Comput. Model. 40, 729 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    S. Rafai, D. Bonn, A. Boudaoud, J. Fluid Mech. 514, 77 (2004)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    S. Rafai, D. Bonn, Phys. A 258, 58 (2005)CrossRefGoogle Scholar
  13. 13.
    X.D. Wang, D.J. Lee, X.F. Peng, J.Y. Lai, Langmuir 23, 8042 (2007)CrossRefGoogle Scholar
  14. 14.
    X.D. Wang, Y. Zhang, D.J. Lee, X.F. Peng, Langmuir 23, 9258 (2007)CrossRefGoogle Scholar
  15. 15.
    D.E. Weidner, L.W. Schwartz, Phys. Fluids 6, 3535 (1994)ADSCrossRefMATHGoogle Scholar
  16. 16.
    L. Ansini, L. Giacomelli, Nonlinearity 15, 2147 (2002)MathSciNetADSCrossRefMATHGoogle Scholar
  17. 17.
    S.Y. Nieh, R.M. Ybarra, P. Neogi, Macromolecules 29, 320 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    P. Neogi, R.M. Ybarra, J. Chem. Phys. 115, 7811 (2001)ADSCrossRefGoogle Scholar
  19. 19.
    G.K. Seevaratnam, Y. Suo, E. Rame, L.M. Walker, S. Garoff, Phys. Fluids 19, 012103 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    A. Boudaoud, Eur. Phys. J. E 22, 107 (2007)CrossRefGoogle Scholar
  21. 21.
    Z.P. Liang, X.D. Wang, Y.Y. Duan, Q. Min, C. Wang, D.J. Lee, Langmuir 26, 14594 (2010)CrossRefGoogle Scholar
  22. 22.
    Z.P. Liang, X.D. Wang, D.J. Lee, X.F. Peng, A. Su, J. Phys. Condens. Matter 21, 464117 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    Q. Min, Y.Y. Duan, X.D. Wang, Z.P. Liang, D.J. Lee, A. Su, J. Colloid Interface Sci. 348, 250 (2010)CrossRefGoogle Scholar
  24. 24.
    S.R. Raghavan, S.A. Khan, J. Colloid Interface Sci. 185, 57 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing China
  2. 2.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal EngineeringTsinghua UniversityBeijing China
  3. 3.State Key Laboratory of Alternate Electrical Power System with Renewable Energy SourcesNorth China Electric Power UniversityBeijing China
  4. 4.Department of Chemical EngineeringNational Taiwan UniversityTaipei Taiwan

Personalised recommendations