International Journal of Thermophysics

, Volume 35, Issue 11, pp 2011–2022 | Cite as

Optimization of a Thermal Lens Microscope for Detection in a Microfluidic Chip

  • Mingqiang Liu
  • Uroš Novak
  • Igor Plazl
  • Mladen Franko


The optical configuration of a thermal lens microscope (TLM) was optimized for detection in a microfluidic chip with respect to the flow velocity, and the pump and probe beam parameters (beam waists, offsets, and mode mismatching degree). It was found that an appropriate pump–probe beam offset for a certain flow velocity would provide not only a higher sensitivity but also a better response linearity of TLM over three orders of magnitude of sample concentration. Diffraction-limited pump beam excitation is advantageous for space-resolved measurement, while a larger pump beam with 10 times lower power density is favorable for higher sensitivity at given experimental conditions. As an application, TLM was used to study the diffusion of azobenzene in a microfluidic chip. Diffusion profiles at different distances from the mixing point were recorded by scanning the TL signal along the cross section of the microchannel. By fitting the diffusion profiles to a theoretical model of mass transfer in a microchannel, diffusion coefficients of azobenzene in octane and methanol were determined to be \(5\times 10^{-10}\,\hbox {m}^{2}{\cdot }\,\hbox {s}^{-1}\) and \(6\times 10^{-10}\,\hbox {m}^{2}{\cdot }\,\hbox {s}^{-1}\), respectively.


Diffusion measurement Microfluidic chip Optimization  Thermal lens microscope 



The authors thank the Slovenian Research Agency for financial support through the research program grant P1-0034 and the young researcher fellowship to M. Liu.


  1. 1.
    M. Harada, K. Iwamoto, T. Kitamori, T. Sawada, Anal. Chem. 65, 2938 (1993)CrossRefGoogle Scholar
  2. 2.
    S.E. Bialkowski, Photothermal Spectroscopy Methods for Chemical Analysis (Wiley, New York, 1996)Google Scholar
  3. 3.
    T. Kitamori, M. Tokeshi, A. Hibara, K. Sato, Anal. Chem. 76, 52A (2004)CrossRefGoogle Scholar
  4. 4.
    M. Tokeshi, T. Minagawa, K. Uchiyama, A. Hibara, K. Sato, H. Hisamoto, T. Kitamori, Anal. Chem. 74, 1565 (2002)CrossRefGoogle Scholar
  5. 5.
    A. Smirnova, K. Mawatari, A. Hibara, M.A. Proskurnin, T. Kitamori, Anal. Chim. Acta 558, 69 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Kimura, F. Nagao, A. Kitamura, K. Sekiguchi, T. Takehiko, T. Sawada, Anal. Biochem. 283, 27 (2000)CrossRefGoogle Scholar
  7. 7.
    E. Tamaki, K. Sato, M. Tokeshi, K. Sato, M. Aihara, T. Kitamori, Anal. Chem. 74, 1560 (2002)CrossRefGoogle Scholar
  8. 8.
    M.A. Proskurnin, M.N. Slyadnev, M. Tokeshi, T. Kitamori, Anal. Chim. Acta 480, 79 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Chanlon, J. Georges, Spectrochim. Acta A 58, 1607 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    N. Ragozina, S. Heissler, W. Faubel, U. Pyell, Anal. Chem. 74, 4480 (2002)CrossRefGoogle Scholar
  11. 11.
    K. Mawatari, S. Kubota, T. Kitamori, Anal. Bioanal. Chem. 391, 2521 (2008)CrossRefGoogle Scholar
  12. 12.
    M. Liu, D. Korte, M. Franko, J. Appl. Phys. 111, 033109-1 (2012)ADSGoogle Scholar
  13. 13.
    S.R. Erskine, D.R. Bobbitt, Appl. Spectrosc. 42, 331 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    P. Žnidaršič-Plazl, I. Plazl, Lab Chip 7, 883 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mingqiang Liu
    • 1
  • Uroš Novak
    • 2
  • Igor Plazl
    • 2
  • Mladen Franko
    • 1
  1. 1.Laboratory for Environmental ResearchUniversity of Nova GoricaNova GoricaSlovenia
  2. 2.Department of Chemical Engineering, Faculty of Chemistry and Chemical TechnologyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations