Advertisement

International Journal of Thermophysics

, Volume 34, Issue 10, pp 1865–1905 | Cite as

Generalized Fundamental Equation of State for the Normal Alkanes \((\hbox {C}_{5}{-}\hbox {C}_{50})\)

  • Igor Alexandrov
  • Anatoly Gerasimov
  • Boris Grigor’ev
Article

Abstract

Based on the extended three-parameter corresponding-states principle and the most reliable experimental data of \(n\)-alkanes, a generalized fundamental equation of state for technical calculations has been developed. This equation is in the form of the reduced Helmholtz free energy and takes the reduced density, reduced temperature, and acentric factor as variables. The proposed equation satisfies the critical conditions and Maxwell rule, shows correct behavior for the ideal curves and for the derivatives of the thermodynamic potentials, and allows the calculation of all thermodynamic properties including phase equilibrium of \(n\)-alkanes from \(n\)-pentane \((\hbox {C}_{5})\) to \(n\)-pentacontane \((\hbox {C}_{50})\) over a temperature range from the triple point to 700 K with pressures up to 100 MPa. The new equation differs from the previous generalized equations of other authors by a wider range of variation of the acentric factor \(\omega =0.25\) to 1.8, and by more accurately predicting thermal properties.

Keywords

Acentric factor Density Equation of state Heat capacity Hydrocarbons Normal alkanes Saturated vapor pressure Speed of sound 

Notes

Acknowledgments

The authors would like to thank Dr. Eric W. Lemmon at the National Institute of Standards and Technology for his help in collecting experimental data and for his valuable comments. The authors are grateful to the Russian Foundation for Basic Research (RFBR) for financial support under Grant No. 09-08-00683a.

References

  1. 1.
    R. Span, Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)Google Scholar
  2. 2.
    O. Redlich, J.N.S. Kwong, Chem. Rev. 44, 233 (1949)Google Scholar
  3. 3.
    G.S. Soave, Chem. Eng. Sci. 27, 1197 (1972)Google Scholar
  4. 4.
    D.-Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fund. 15, 59 (1976)MATHGoogle Scholar
  5. 5.
    A.I. Brusilovsky, Phase Transformations in Developing Oil and Gas (Graal, Moscow, 2002)Google Scholar
  6. 6.
    S.B. Kiselev, Ind. Eng. Chem. Res. 38, 4993 (1999)Google Scholar
  7. 7.
    P. Paricaud, A. Galindo, G. Jackson, Fluid Phase Equilib. 194, 87 (2002)Google Scholar
  8. 8.
    M. Benedict, G.B. Webb, L.C. Rubin, J. Chem. Phys. 8, 334 (1940)ADSGoogle Scholar
  9. 9.
    S.M. Walas, Phase Equilibria in Chemical Engineering (Butterworth Publishers, Boston, 1989)Google Scholar
  10. 10.
    B.I. Lee, M.G. Kessler, AIChE J. 21, 510 (1975)Google Scholar
  11. 11.
    K.S. Pitzer, R.F. Curl, Ind. Eng. Chem. 50, 265 (1958)Google Scholar
  12. 12.
    B. Saager, R. Hennenberg, J. Fisher, Fluid Phase Equilib. 72, 41 (1992)Google Scholar
  13. 13.
    B. Saager, J. Fisher, Fluid Phase Equilib. 72, 67 (1992)Google Scholar
  14. 14.
    A. Muller, J. Winkelmann, J. Fisher, AIChE J. 42, 1116 (1996)Google Scholar
  15. 15.
    S. Calero, M. Wendland, J. Fisher, Fluid Phase Equilib. 152, 1 (1998)Google Scholar
  16. 16.
    B. Platzer, G. Maurer, Fluid Phase Equilib. 51, 223 (1989)Google Scholar
  17. 17.
    E. Bender, in Proceedings of 5th Symposium on Thermophysical Properties (American Society of Mechanical Engineers, New York, 1970), pp. 227–235Google Scholar
  18. 18.
    L. Sun, J.E. Ely, Fluid Phase Equilib. 222/223, 107 (2004)Google Scholar
  19. 19.
    E.W. Lemmon, A.R.H. Goodwin, J. Phys. Chem. Ref. Data 29, 1 (2000)ADSGoogle Scholar
  20. 20.
    A.S. Teja, R.J. Lee, D. Rosenthal, M. Anselme, Fluid Phase Equilib. 56, 153 (1990)Google Scholar
  21. 21.
    E.W. Lemmon, M.L. Huber, Energy Fuels 18, 960 (2004)Google Scholar
  22. 22.
    B. Schmidt, Wiss. Zeitschr. Tech. Univ. Leuna-Merseburg 20, 506 (1978)Google Scholar
  23. 23.
    D.S. Kurumov, Thermal Properties of n-Alkanes and Fractions of Mangyshlak Oil in Liquid and Gaseous States (Dr. Sci. Thesis, Grozny Petroleum Institute, Russia, 1991)Google Scholar
  24. 24.
    A.A. Gerasimov, Caloric Properties Of Normal Alkanes and Multi-Component Hydrocarbon Mixtures in a Liquid and Gas Phases, Including a Critical Region (Thesis, Kaliningrad State Technical University, Russia, Dr. Sci, 2000)Google Scholar
  25. 25.
    I.S. Alexandrov, A.A. Gerasimov, E.B. Grigor’ev, Defense complex. Sci Tech Prog Russ 4, 56 (2010)Google Scholar
  26. 26.
    B.A. Grigor’ev, Thermophysical Properties of Oil, Oil Products, Gas Condensates and Fractions (Moscow Power Engineering Institute, Moscow, 1999)Google Scholar
  27. 27.
    P.A. Chmykhalo, DSSDD (Ukrainian State Standard) 7-2005: The Procedure for Calculating the Saturated Vapor Pressure of n-Alkanes \((\text{ C }_{1}{-}\text{ C }_{100})\) and Hydrogen on the Boiling Line (Derzhspozhivstandard Ukrainy, Kiev, 2005)Google Scholar
  28. 28.
    P.A. Chmykhalo, DSSDD (Ukrainian State Standard) 10-2006: The Procedure for Calculating the the Density of Liquid n-Alkanes \((\text{ C }_{1}{-}\text{ C }_{100})\) and Hydrogen on the Boiling Line (Derzhspozhivstandard Ukrainy, Kiev, 2006)Google Scholar
  29. 29.
    L. Sun, J.E. Ely, Int. J. Thermophys. 26, 705 (2005)ADSGoogle Scholar
  30. 30.
    B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 34, 730 (1942)Google Scholar
  31. 31.
    J.A. Beattie, S.W. Levine, D.R. Douslin, J. Am. Chem. Soc. 74, 4778 (1952)Google Scholar
  32. 32.
    K. Li, L.N. Canjar, Chem. Eng. Prog., Symp. Ser. 49, 147 (1953)Google Scholar
  33. 33.
    W.G.S. Scaife, C.G.R. Lyons, Proc. R. Soc. London 370, 193 (1980)ADSGoogle Scholar
  34. 34.
    H. Kratzke, S. Muller, M. Bohn, R. Kohlen, J. Chem. Thermodyn. 17, 283 (1985)Google Scholar
  35. 35.
    B.A. Grigor’ev, D.S. Kurumov, I.M. Abdulagatov, YuL Vasilev. Teplofiz. Vys. Temp. 24, 1096 (1986)Google Scholar
  36. 36.
    E. Kiran, Y.L. Sen, Int. J. Thermophys. 13, 411 (1992)ADSGoogle Scholar
  37. 37.
    H. Poehler, E. Kiran, J. Chem. Eng. Data 42, 389 (1997)Google Scholar
  38. 38.
    I.M. Abdulagatov, A.R. Bazaev, E.A. Bazaev, S.P. Khokhlachev, M.B. Saidakhmedova, A.E. Ramazanova, J. Sol. Chem. 27, 729 (1998)Google Scholar
  39. 39.
    B. Tohidi, R.W. Burgass, A. Danesh, A.C. J. Chem. Eng. Data 46, 385 (2001)Google Scholar
  40. 40.
    S. Young, Proc. Roy. Irish Acad. 38B, 65 (1928)Google Scholar
  41. 41.
    C.B. Willingham, W.J. Taylor, J.M. Pignocco, F.D. Rossini, J. Res. Natl. Bur. Stand. 35, 219 (1945)Google Scholar
  42. 42.
    E.R. Nicolini, Ann. Chim. 6, 582 (1951)Google Scholar
  43. 43.
    J.A. Beattie, S.W. Levine, D.R. Douslin, J. Am. Chem. Soc. 73, 4431 (1951)Google Scholar
  44. 44.
    D.A. Zanolini, Measurements of Vapor Pressures of Volatile Hydrocarbons (Masters Thesis, Pennsylvania State University, 1964)Google Scholar
  45. 45.
    D.R. Douslin, Proc. Div. Ref., Am. Petrol. Inst. 50, 189 (1970)Google Scholar
  46. 46.
    A.G. Osborn, D.R. Douslin, J. Chem. Eng. Data 19, 114 (1974)Google Scholar
  47. 47.
    C. Horner, A. Hopfner, B. Schmeiser, Ber. Bunsenges. Phys. Chem. 79, 222 (1975)Google Scholar
  48. 48.
    I.A. Hossenlopp, D.W. Scott, J. Chem. Thermodyn. 13, 415 (1981)Google Scholar
  49. 49.
    A. Olivares Fuentes, J. Suarez Cansino, A. Trejo Redriquez, Rev. Mex. Fis. 30, 63 (1983)Google Scholar
  50. 50.
    H.N. Maia de Oliveira, J. Chem. Eng. Data 47, 1384 (2002)Google Scholar
  51. 51.
    R.W. Dornte, C.P. Smyth, J. Am. Chem. Soc. 52, 3546 (1930)Google Scholar
  52. 52.
    B.R. Carney, Pet. Ref. 21, 84 (1942)Google Scholar
  53. 53.
    I.S. Alexandrov, Fundamental Equations of State of Petroleum Hydrocarbons (Ph.D. Thesis, Kaliningrad State Technical University, 2012)Google Scholar
  54. 54.
    C.D. Holcomb, J.W. Magee, W.M. Haynes, Density Measurements on Natural Gas Liquids (Gas Processors Association Research, Report RR-147, 1995)Google Scholar
  55. 55.
    V.A. Mirskaya, I.K. Kamilov, Fluid Phase Equilib. 125, 169 (1996)Google Scholar
  56. 56.
    I.M. Abdulagatov, Experimental Results for the Isochoric Heat Capacity of n-Heptane and n-Octane, private communication (National Institute of Standards and Technology, Boulder, Colorado, 1998)Google Scholar
  57. 57.
    KhI Amirkhanov, B.G. Alibekov, D.I. Vikhrov, V.A. Mirskaya, L.N. Levina. High Temp. 9, 1211 (1971)Google Scholar
  58. 58.
    G.H. Messerly, R.M. Kennedy, J. Am. Chem. Soc. 62, 2988 (1940)Google Scholar
  59. 59.
    J.F. Messerly, G.B. Guthrie, S.S. Todd, H.L. Finke, J. Chem. Eng. Data 12, 338 (1967)Google Scholar
  60. 60.
    E.G. Richardson, R.I. Tait, J. Philos. Mag. 2, 441 (1957)ADSGoogle Scholar
  61. 61.
    A. Lainez, J.A. Zollweg, W.B. Streett, J. Chem. Thermodyn. 22, 937 (1990)Google Scholar
  62. 62.
    E.A. Kelso, W.A. Felsing, J. Am. Chem. Soc. 62, 3132 (1940)Google Scholar
  63. 63.
    J. Schaffenger, On the Nonideal Behavior of Some Hydrocarbons in the Vapor Phase (Ph.D. Thesis, Ruhr-Universitat Rostock, 1963)Google Scholar
  64. 64.
    D. Oeder, G.M. Schneider, Ber. Bunsenges. Phys. Chem. 74, 580 (1970)Google Scholar
  65. 65.
    B.A. Grigor’ev, D.S. Kurumov, Viniti Deposited, Publication (1981)Google Scholar
  66. 66.
    T. Moriyoshi, T. Aono, J. Chem. Thermodyn. 20, 185 (1988)Google Scholar
  67. 67.
    S.S. Susnar, C.J. Budziak, H.A. Hamza, A.W. Neumann, Int. J. Thermophys. 13, 443 (1992)ADSGoogle Scholar
  68. 68.
    P. Sauermann, K. Holzapfel, J. Oprznski, F. Kohler, W. Poot, T.W. de Loos, Fluid Phase Equilib. 112, 249 (1995)Google Scholar
  69. 69.
    J.L. Daridon, B. Lagourette, J.-P.E. Grolier, Int. J. Thermophys. 19, 145 (1998)Google Scholar
  70. 70.
    I. Brown, Aust. J. Sci. Res. A5, 530 (1952)ADSGoogle Scholar
  71. 71.
    I.P.-C. Li, B.C.-Y. Lu, E.C. Chen, J. Chem. Eng. Data 18, 305 (1973)Google Scholar
  72. 72.
    A.H.N. Mousa, J. Chem. Thermodyn. 9, 1063 (1977)Google Scholar
  73. 73.
    S.A. Wieczorek, J. Stecki, J. Chem. Thermodyn. 10, 177 (1978)Google Scholar
  74. 74.
    J.M. Genco, A.S. Teja, W.B. Kay, J. Chem. Eng. Data 25, 355 (1980)Google Scholar
  75. 75.
    T.W. de Loos, W. Poot, J. de Swaan Arons, Fluid Phase Equilib. 42, 209 (1988)Google Scholar
  76. 76.
    H.S. Wu, S.I. Sandler, J. Chem. Eng. Data 33, 157 (1988)Google Scholar
  77. 77.
    E. Bich, T. Lober, J. Millat, Fluid Phase Equilib. 75, 149 (1992)Google Scholar
  78. 78.
    R.L. Schmidt, J.C. Randall, H.L. Clever, J. Phys. Chem. 70, 3912 (1966)Google Scholar
  79. 79.
    M.S. Rozhnov, Khim. Prom. 43, 48 (1967)Google Scholar
  80. 80.
    G.H. Findenegg, Monatshefte Chem. 101, 1081 (1970)Google Scholar
  81. 81.
    E. Aicart, G. Tardajos, M. Diaz Pena, J. Chem. Eng. Data 25, 140 (1980)Google Scholar
  82. 82.
    J.H. Dymond, K.J. Young, Int. J. Thermophys. 1, 331 (1980)ADSGoogle Scholar
  83. 83.
    C.-H. Yu, F.-N. Tsai, J. Chem. Eng. Data 40, 601 (1995)Google Scholar
  84. 84.
    B. Garcia, R. Alcalde, S. Aparicio, J.M. Leal, Ind. Eng. Chem. Res. 41, 4399 (2002)Google Scholar
  85. 85.
    H.M. Huffman, G.S. Parks, M. Barmore, J. Am. Chem. Soc. 53, 3876 (1931)Google Scholar
  86. 86.
    D.R. Douslin, H.M. Huffman, J. Am. Chem. Soc. 68, 1704 (1946)Google Scholar
  87. 87.
    G. Waddington, D.R. Douslin, J. Am. Chem. Soc. 69, 2275 (1947)Google Scholar
  88. 88.
    R. Paramo, M. Zouine, C. Casanova, J. Chem. Eng. Data 47, 441 (2002)Google Scholar
  89. 89.
    J.W.M. Boelhouwer, Physica 34, 484 (1967)ADSGoogle Scholar
  90. 90.
    V.N. Verveiko, G.A. Melnikov, YaF Melikhov, Teplofizicheskiye svoystva veshchestv i materialov 30, 5 (1991)Google Scholar
  91. 91.
    T.S. Khasanshin, A.P. Shchemelev, High Temp. 39, 60 (2001)Google Scholar
  92. 92.
    S.J. Ball, J.P.M. Trusler, Int. J. Thermophys. 22, 427 (2001)Google Scholar
  93. 93.
    L.B. Smith, J.A. Beattie, W.C. Kay, J. Am. Chem. Soc. 59, 1587 (1937)Google Scholar
  94. 94.
    W.B. Nichols, H.H. Reamer, B.H. Sage, Ind. Eng. Chem. 47, 2219 (1955)Google Scholar
  95. 95.
    J.W.M. Boelhouwer, Physica 26, 1021 (1960)ADSGoogle Scholar
  96. 96.
    A.K. Doolittle, J. Chem. Eng. Data 9, 275 (1964)Google Scholar
  97. 97.
    A.Z. Golik, I.I. Adamenko, M.G. Makhno, Fiz. Zhidk. Sostoyaniya 10, 3 (1982)Google Scholar
  98. 98.
    A. Zawisza, J. Vejrosta, J. Chem. Thermodyn. 14, 239 (1982)Google Scholar
  99. 99.
    M.J.P. Muringer, N.J. Trappeniers, S.N. Biswas, Phys. Chem. Liq. 14, 273 (1985)Google Scholar
  100. 100.
    S. Toscani, P. Figuiere, H. Szwarc, J. Chem. Thermodyn. 21, 1263 (1989)Google Scholar
  101. 101.
    E.R. Smith, J. Res. Natl. Bur. Stand. 24, 229 (1940)Google Scholar
  102. 102.
    A.F. Forziati, W.R. Norris, F.D. Rossini, J. Res. Natl. Bur. Stand. 43, 555 (1949)Google Scholar
  103. 103.
    L.A. Weber, J. Chem. Eng. Data 45, 173 (2000)Google Scholar
  104. 104.
    M.B. Ewing, J.C.S. Ochoa, J. Chem. Eng. Data 50, 1543 (2005)Google Scholar
  105. 105.
    P.M. Christopher, W.L.S. Laukhuf, C.A. Plank, J. Chem. Eng. Data 21, 443 (1976)Google Scholar
  106. 106.
    K. Stephan, H. Hildwein, Dechema 4, 1/2 (1987)Google Scholar
  107. 107.
    H. Kahl, T. Wadewitz, J. Winkelmann, J. Chem. Eng. Data 48, 580 (2003)Google Scholar
  108. 108.
    J.L. San Jose, G. Mellinger, R.C. Reid, J. Chem. Eng. Data 21, 414 (1976)Google Scholar
  109. 109.
    B. Kalinowska, J. Jedlinska, W. Woycicki, J. Stecki, J. Chem. Thermodyn. 12, 891 (1980)Google Scholar
  110. 110.
    M. Zabransky, V. Ruzicka Jr, J. Phys. Chem. Ref. Data 23, 55 (1994)ADSGoogle Scholar
  111. 111.
    N.S. Osborne, D.C. Ginnings, J. Res. Nat. Bur. Stand. 39, 453 (1947)Google Scholar
  112. 112.
    L. Becker, O. Aufderhaar, J. Gmehling, J. Chem. Eng. Data 45, 661 (2000)Google Scholar
  113. 113.
    N.G. Polikhronidi, I.M. Abdulagatov, R.G. Batyrova, Fluid Phase Equilib. 201, 269 (2002)Google Scholar
  114. 114.
    R. Kling, E. Nicolini, J. Tissot, Rech. Aeronaut. 31, 31 (1953)Google Scholar
  115. 115.
    W.A. Felsing, G.M. Watson, J. Am. Chem. Soc. 64, 1822 (1942)Google Scholar
  116. 116.
    J.H. Dymond, J.D. Isdale, N.F. Glen, Fluid Phase Equilib. 20, 305 (1985)Google Scholar
  117. 117.
    T.S. Banipal, S.K. Garg, J.C. Ahluwalia, J. Chem. Thermodyn. 23, 923 (1991)Google Scholar
  118. 118.
    Y. Tanaka, H. Hosokawa, H. Kubota, T. Makita, Int. J. Thermophys. 12, 245 (1991)ADSGoogle Scholar
  119. 119.
    A.R.H. Goodwin, C.H. Bradsell, L.S. Toczylkin, J. Chem. Thermodyn. 28, 637 (1996)Google Scholar
  120. 120.
    A.G.A. Badalyan, A.S. Keramidi, D.S. Kurumov, Izv. Vyssh. Uchebn. Zaved., Neft Gaz 29, 54 (1986)ADSGoogle Scholar
  121. 121.
    P. Gierycz, J. Gregorowicz, S. Malanowski, J. Chem. Thermodyn. 20, 385 (1988)Google Scholar
  122. 122.
    A. Dejoz, V. Gonzalez-Alfaro, P.J. Miguel, M.I. Vazquez, J. Chem. Eng. Data 41, 93 (1996)Google Scholar
  123. 123.
    M.B. Ewing, J.C. Sanchez Ochoa, Fluid Phase Equilib. 210, 277 (2003)Google Scholar
  124. 124.
    T.R. Das, N.R. Kuloor, Indian J. Technol. 5, 51 (1967)Google Scholar
  125. 125.
    C.C. Chappelow, P.S. Snyder, J. Winnick, J. Chem. Eng. Data 16, 440 (1971)Google Scholar
  126. 126.
    J.F. Connolly, G.A. Kandalic, J. Chem. Eng. Data 7, 137 (1962)Google Scholar
  127. 127.
    H.L. Finke, M.E. Gross, G. Waddington, H.M. Huffman, J. Am. Chem. Soc. 76, 333 (1954)Google Scholar
  128. 128.
    T. Takagi, H. Teranishi, Fluid Phase Equilib. 20, 315 (1985)Google Scholar
  129. 129.
    Z.S. Ding, J. Alliez, C. Boned, P. Xans, Meas. Sci. Technol. 8, 154 (1997)ADSGoogle Scholar
  130. 130.
    L.T. Carmichael, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 45, 2697 (1953)Google Scholar
  131. 131.
    J.D. White, F.W. Rose, J. Res. Natl. Bur. Stand. 7, 907 (1931)Google Scholar
  132. 132.
    H.-I. Paul, J. Krug, H. Knapp, Thermochim. Acta 108, 9 (1986)Google Scholar
  133. 133.
    J. Ortega, C. Gonzalez, S. Galvan, J. Chem. Eng. Data 46, 904 (2001)Google Scholar
  134. 134.
    T. Grindley, J.E. Lind Jr, J. Chem. Phys. 68, 5046 (1978)ADSGoogle Scholar
  135. 135.
    T. Plebanski, M. Wozniak, K. Wilanowska, Nauchn. Appar. 1, 47 (1986)Google Scholar
  136. 136.
    H.I. Amirkhanov, Isochoric Heat Capacity and Other Caloric Properties of the Hydrocarbons of Methane Series (Makhachkala, Dagestan, 1981)Google Scholar
  137. 137.
    G.S. Parks, H.M. Huffman, S.A. Thomas, J. Am. Chem. Soc. 52, 1032 (1930)Google Scholar
  138. 138.
    C.A. Tovar, E. Carballo, C.A. Cerdeirina, J.L. Legido, L. Romani, Int. J. Thermophys. 18, 761 (1997)ADSGoogle Scholar
  139. 139.
    B.S. Kiryakov, Acoustic and Elastic Properties of n-Paraffins at Pressures up to 2000 at (Ph.D. Thesis, Kursk State Pedagogical Institute, 1981)Google Scholar
  140. 140.
    S. Lago, P.A. Giuliano Albo, D. Madonna Ripa, Int. J. Thermophys. 27, 1083 (2006)ADSGoogle Scholar
  141. 141.
    B.H. Sage, H.M. Lavender, W.N. Lacey, Ind. Eng. Chem. 32, 743 (1940)Google Scholar
  142. 142.
    H.H. Reamer, R.H. Olds, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 34, 1526 (1942)Google Scholar
  143. 143.
    P.S. Snyder, J. Winnick, in Proceedings of 5th Symposium on Thermophysical Properties, vol. 5 (American Society of Mechanical Engineers, New York, 1970), pp. 115–129Google Scholar
  144. 144.
    M. Gehrig, H. Lentz, J. Chem. Thermodyn. 15, 1159 (1983)Google Scholar
  145. 145.
    D.R. Caudwell, J.P.M. Trusler, V. Vesovic, W.A. Wakeham, Int. J. Thermophys. 25, 1339 (2004)ADSGoogle Scholar
  146. 146.
    A. Zuniga-Moreno, L.A. Galicia-Luna, L.E. Camacho-Camacho, J. Chem. Eng. Data 50, 1030 (2005)Google Scholar
  147. 147.
    R.D. Chirico, A. Nguyen, W.V. Steele, M.M. Strube, J. Chem. Eng. Data 34, 149 (1989)Google Scholar
  148. 148.
    D.L. Morgan, R. Kobayashi, Fluid Phase Equilib. 97, 211 (1994)Google Scholar
  149. 149.
    E.C. Bingham, H.J. Fornwalt, J. Rheol. 1, 372 (1930)ADSGoogle Scholar
  150. 150.
    J.H. Dymond, K.J. Young, Int. J. Thermophys. 2, 237 (1981)ADSGoogle Scholar
  151. 151.
    J.A. Gates, R.H. Wood, J.C. Cobos, C. Casanova, A.H. Roux, G. Roux-Desgranges, J.P.E. Grolier, Fluid Phase Equilib. 27, 137 (1986)Google Scholar
  152. 152.
    J. Peleteiro, D. Gonzalez-Salgado, C.A. Cerdeirina, L. Romani, J. Chem. Thermodyn. 34, 485 (2002)Google Scholar
  153. 153.
    T.M. Aminabhavi, B. Gopalakrishna, J. Chem. Eng. Data 39, 529 (1994)Google Scholar
  154. 154.
    L.M. Casas, A. Tourino, B. Orge, G. Marino, M. Iglesias, J. Tojo, J. Chem. Eng. Data 47, 887 (2002)Google Scholar
  155. 155.
    R. Landau, A. Wuerflinger, Ber. Bunsen Ges. Phys. Chem. 84, 895 (1980)Google Scholar
  156. 156.
    D.L. Camin, F.D. Rossini, J. Phys. Chem. 59, 1173 (1955)Google Scholar
  157. 157.
    Anonymous, Properties of Hydrocarbons of High Molecular Weight (American Petroleum Institute Research Project 42, Pennsylvania State University, 1968)Google Scholar
  158. 158.
    A.I. Vogel, J. Chem. Soc. 146, 133 (1946)Google Scholar
  159. 159.
    M. Garcia, C. Rey, V.P. Villar, J.R. Rodriguez, J. Chem. Eng. Data 33, 46 (1988)Google Scholar
  160. 160.
    O.Z. Golik, I.I. Ivanova, Zh Fiz. Khim. 36, 1768 (1962)Google Scholar
  161. 161.
    Y.P. Melikhov, Ultrasound and Thermodynamic Properties of Substances (Kursk State Pedagogical Institute, Kursk, Russia, 1985)Google Scholar
  162. 162.
    F. Plantier, J.-L. Daridon, B. Lagourette, C. Boned, High Temp.-High Press. 32, 305 (2000)Google Scholar
  163. 163.
    W.G. Cutler, R.H. McMickle, W. Webb, R.W. Schlessler, J. Chem. Phys. 29, 727 (1958)ADSGoogle Scholar
  164. 164.
    P. Gierycz, M. Rogalski, S. Malanowski, Fluid Phase Equilib. 22, 107 (1985)Google Scholar
  165. 165.
    D. Bessieres, H. Saint-Guirons, J.-L. Daridon, High Press. Res. 18, 279 (2000)ADSGoogle Scholar
  166. 166.
    M.R. Fenske, W.G. Braun, R.V. Wiegand, D. Quiggle, R.H. McCormick, D.H. Rand, Ann. Chem. 19, 700 (1947)Google Scholar
  167. 167.
    C. Viton, M. Chavret, E. Behar, J. Jose, Int. Electron. J. Phys.-Chem. Data 2, 215 (1996)Google Scholar
  168. 168.
    R.W. Schiessler, C.H. Herr, A.W. Rytina, C.A. Weisel, F. Fischl, R.L. McLaughlin, H.H. Kuehner, Proc. Am. Pet. Inst., Sect. 3 26, 254 (1946)Google Scholar
  169. 169.
    J. Wu, Z. Shan, A.-F.A. Asfour, Fluid Phase Equilib. 143, 263 (1998)Google Scholar
  170. 170.
    J. Peleteiro, D. Gonzalez-Salgado, C.A. Cerdeirina, J.L. Valencia, L. Romani, Fluid Phase Equilib. 191, 83 (2001)Google Scholar
  171. 171.
    A.A. Gerasimov, I.S. Alexandrov, B.A. Grigor’ev, E.B. Grigor’ev, Defense Complex - Scientific and Technical Progress of Russia 1, 43 (2001)Google Scholar
  172. 172.
    P. Gouel, Bull. Cent. Rech. Explor.- Prod. Elf-Aquitaine 2, 211 (1978)Google Scholar
  173. 173.
    K. Holzapfel, G. Goetze, A.M. Demiriz, F. Kohler, Int. Data Ser., Sel. Data Mixtures, Ser. A 30,(1987)Google Scholar
  174. 174.
    E. Gawronska, L. Dordain, J.-Y. Coxam, J.R. Quint, J.-P. Grolier, J. Chem. Eng. Data 40, 1257 (1995)Google Scholar
  175. 175.
    P. Kneisl, J.W. Zondlo, J. Chem. Eng. Data 32, 11 (1987)Google Scholar
  176. 176.
    F. Krafft, Ber. Dtsch. Chem. Ges. 15, 1687 (1882)Google Scholar
  177. 177.
    G. Calingaert, H.A. Beatty, R.C. Kuder, G.W. Thoson, Ind. Eng. Chem. 33, 103 (1941)Google Scholar
  178. 178.
    V.V. Roshchupkin, Nek. Vopr. Fiz. Tekh. Yad. Reakt. 151, (1965)Google Scholar
  179. 179.
    J.L. Daridon, B. Lagourette, High Temp.-High Press. 32, 83 (2000)Google Scholar
  180. 180.
    J.M. Pardo, C.A. Tovar, D. Gonzalez, E. Carballo, L. Romani, J. Chem. Eng. Data 46, 212 (2001)Google Scholar
  181. 181.
    J.L. Daridon, H. Carrier, B. Lagourette, Ind. Eng. Chem. 23, 697 (2002)Google Scholar
  182. 182.
    S. Landa, J. Romovacek, H. Romovackova, Chem. Listy 49, 313 (1955)Google Scholar
  183. 183.
    P.M. Diaz Pena, G. Tardajos, J. Chem. Thermodyn. 10, 19 (1978)Google Scholar
  184. 184.
    J.H. Dymond, K.J. Young, J.D. Isdale, J. Chem. Thermodyn. 11, 887 (1979)Google Scholar
  185. 185.
    J.S. Chang, M.J. Lee, H.M. Lin, J. Chem. Eng. Data 43, 233 (1998)Google Scholar
  186. 186.
    P.L. Mills, R.L. Fento, J. Chem. Eng. Data 32, 266 (1987)Google Scholar
  187. 187.
    M.F. Grenier-Loustalot, M. Potin-Gautier, P. Grenier, Anal. Lett. 14, 1335 (1981)Google Scholar
  188. 188.
    R.W. Schiessler, The Synthesis and Properties of Hydrocarbons of High Molecular Weight, American Petroleum Institute Research Project 42 (1947)Google Scholar
  189. 189.
    H.S. Myers, M.R. Fenske, Ind. Eng. Chem. 47, 1652 (1955)Google Scholar
  190. 190.
    Buckland, W.F. Seyer, Personal Commun. Dec. 21 (1950)Google Scholar
  191. 191.
    P. Gray, P.L. Smith, J. Chem. Soc. 769, (1954)Google Scholar
  192. 192.
    J.F. Eykman, Recl. Trav. Chim. Pays-Bas 15, 52 (1986)Google Scholar
  193. 193.
    J.W.J. McKinney, Am. Chem. Soc. 46, 968 (1924)Google Scholar
  194. 194.
    L.T. Chu, C. Sindilariu, A. Freilich, V. Fried, Can. J. Chem. 64, 481 (1986)Google Scholar
  195. 195.
    K. Sasse, J. Jose, J.-C. Merlin, Fluid Phase Equilib. 42, 287 (1988)Google Scholar
  196. 196.
    J.B. Rodden, C. Erkey, A. Akgerman, J. Chem. Eng. Data 33, 344 (1988)Google Scholar
  197. 197.
    W.M. Mazee, Recl. Trav. Chim. 67, 197 (1948)Google Scholar
  198. 198.
    A.W. Schmidt, Ber. Dtsch. Chem. Ges. B75, 1399 (1942)Google Scholar
  199. 199.
    E.F. Meyer, K.S. Stec, J. Am. Chem. Soc. 93, 5451 (1971)Google Scholar
  200. 200.
    D.L. Wakefield, K.N. Marsh, Int. J. Thermophys. 8, 649 (1987)ADSGoogle Scholar
  201. 201.
    H.I. Waterman, J.J. Leendertse, D.W. Van Krevelen, Rev. Pet. Technol. (London) 25, 801 (1939)Google Scholar
  202. 202.
    E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Igor Alexandrov
    • 1
  • Anatoly Gerasimov
    • 1
  • Boris Grigor’ev
    • 2
  1. 1.Kaliningrad State Technical UniversityKaliningrad Russia
  2. 2.Institute for Oil and Gas Problems, Russian Academy of SciencesMoscow Russia

Personalised recommendations