Skip to main content

Advertisement

Log in

Generalized Fundamental Equation of State for the Normal Alkanes \((\hbox {C}_{5}{-}\hbox {C}_{50})\)

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Based on the extended three-parameter corresponding-states principle and the most reliable experimental data of \(n\)-alkanes, a generalized fundamental equation of state for technical calculations has been developed. This equation is in the form of the reduced Helmholtz free energy and takes the reduced density, reduced temperature, and acentric factor as variables. The proposed equation satisfies the critical conditions and Maxwell rule, shows correct behavior for the ideal curves and for the derivatives of the thermodynamic potentials, and allows the calculation of all thermodynamic properties including phase equilibrium of \(n\)-alkanes from \(n\)-pentane \((\hbox {C}_{5})\) to \(n\)-pentacontane \((\hbox {C}_{50})\) over a temperature range from the triple point to 700 K with pressures up to 100 MPa. The new equation differs from the previous generalized equations of other authors by a wider range of variation of the acentric factor \(\omega =0.25\) to 1.8, and by more accurately predicting thermal properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. Span, Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data (Springer, Berlin, 2000)

    Google Scholar 

  2. O. Redlich, J.N.S. Kwong, Chem. Rev. 44, 233 (1949)

    Google Scholar 

  3. G.S. Soave, Chem. Eng. Sci. 27, 1197 (1972)

    Google Scholar 

  4. D.-Y. Peng, D.B. Robinson, Ind. Eng. Chem. Fund. 15, 59 (1976)

    MATH  Google Scholar 

  5. A.I. Brusilovsky, Phase Transformations in Developing Oil and Gas (Graal, Moscow, 2002)

    Google Scholar 

  6. S.B. Kiselev, Ind. Eng. Chem. Res. 38, 4993 (1999)

    Google Scholar 

  7. P. Paricaud, A. Galindo, G. Jackson, Fluid Phase Equilib. 194, 87 (2002)

    Google Scholar 

  8. M. Benedict, G.B. Webb, L.C. Rubin, J. Chem. Phys. 8, 334 (1940)

    ADS  Google Scholar 

  9. S.M. Walas, Phase Equilibria in Chemical Engineering (Butterworth Publishers, Boston, 1989)

    Google Scholar 

  10. B.I. Lee, M.G. Kessler, AIChE J. 21, 510 (1975)

    Google Scholar 

  11. K.S. Pitzer, R.F. Curl, Ind. Eng. Chem. 50, 265 (1958)

    Google Scholar 

  12. B. Saager, R. Hennenberg, J. Fisher, Fluid Phase Equilib. 72, 41 (1992)

    Google Scholar 

  13. B. Saager, J. Fisher, Fluid Phase Equilib. 72, 67 (1992)

    Google Scholar 

  14. A. Muller, J. Winkelmann, J. Fisher, AIChE J. 42, 1116 (1996)

    Google Scholar 

  15. S. Calero, M. Wendland, J. Fisher, Fluid Phase Equilib. 152, 1 (1998)

    Google Scholar 

  16. B. Platzer, G. Maurer, Fluid Phase Equilib. 51, 223 (1989)

    Google Scholar 

  17. E. Bender, in Proceedings of 5th Symposium on Thermophysical Properties (American Society of Mechanical Engineers, New York, 1970), pp. 227–235

  18. L. Sun, J.E. Ely, Fluid Phase Equilib. 222/223, 107 (2004)

    Google Scholar 

  19. E.W. Lemmon, A.R.H. Goodwin, J. Phys. Chem. Ref. Data 29, 1 (2000)

    ADS  Google Scholar 

  20. A.S. Teja, R.J. Lee, D. Rosenthal, M. Anselme, Fluid Phase Equilib. 56, 153 (1990)

    Google Scholar 

  21. E.W. Lemmon, M.L. Huber, Energy Fuels 18, 960 (2004)

    Google Scholar 

  22. B. Schmidt, Wiss. Zeitschr. Tech. Univ. Leuna-Merseburg 20, 506 (1978)

    Google Scholar 

  23. D.S. Kurumov, Thermal Properties of n-Alkanes and Fractions of Mangyshlak Oil in Liquid and Gaseous States (Dr. Sci. Thesis, Grozny Petroleum Institute, Russia, 1991)

  24. A.A. Gerasimov, Caloric Properties Of Normal Alkanes and Multi-Component Hydrocarbon Mixtures in a Liquid and Gas Phases, Including a Critical Region (Thesis, Kaliningrad State Technical University, Russia, Dr. Sci, 2000)

  25. I.S. Alexandrov, A.A. Gerasimov, E.B. Grigor’ev, Defense complex. Sci Tech Prog Russ 4, 56 (2010)

    Google Scholar 

  26. B.A. Grigor’ev, Thermophysical Properties of Oil, Oil Products, Gas Condensates and Fractions (Moscow Power Engineering Institute, Moscow, 1999)

    Google Scholar 

  27. P.A. Chmykhalo, DSSDD (Ukrainian State Standard) 7-2005: The Procedure for Calculating the Saturated Vapor Pressure of n-Alkanes \((\text{ C }_{1}{-}\text{ C }_{100})\) and Hydrogen on the Boiling Line (Derzhspozhivstandard Ukrainy, Kiev, 2005)

  28. P.A. Chmykhalo, DSSDD (Ukrainian State Standard) 10-2006: The Procedure for Calculating the the Density of Liquid n-Alkanes \((\text{ C }_{1}{-}\text{ C }_{100})\) and Hydrogen on the Boiling Line (Derzhspozhivstandard Ukrainy, Kiev, 2006)

  29. L. Sun, J.E. Ely, Int. J. Thermophys. 26, 705 (2005)

    ADS  Google Scholar 

  30. B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 34, 730 (1942)

    Google Scholar 

  31. J.A. Beattie, S.W. Levine, D.R. Douslin, J. Am. Chem. Soc. 74, 4778 (1952)

    Google Scholar 

  32. K. Li, L.N. Canjar, Chem. Eng. Prog., Symp. Ser. 49, 147 (1953)

    Google Scholar 

  33. W.G.S. Scaife, C.G.R. Lyons, Proc. R. Soc. London 370, 193 (1980)

    ADS  Google Scholar 

  34. H. Kratzke, S. Muller, M. Bohn, R. Kohlen, J. Chem. Thermodyn. 17, 283 (1985)

    Google Scholar 

  35. B.A. Grigor’ev, D.S. Kurumov, I.M. Abdulagatov, YuL Vasilev. Teplofiz. Vys. Temp. 24, 1096 (1986)

    Google Scholar 

  36. E. Kiran, Y.L. Sen, Int. J. Thermophys. 13, 411 (1992)

    ADS  Google Scholar 

  37. H. Poehler, E. Kiran, J. Chem. Eng. Data 42, 389 (1997)

    Google Scholar 

  38. I.M. Abdulagatov, A.R. Bazaev, E.A. Bazaev, S.P. Khokhlachev, M.B. Saidakhmedova, A.E. Ramazanova, J. Sol. Chem. 27, 729 (1998)

    Google Scholar 

  39. B. Tohidi, R.W. Burgass, A. Danesh, A.C. J. Chem. Eng. Data 46, 385 (2001)

    Google Scholar 

  40. S. Young, Proc. Roy. Irish Acad. 38B, 65 (1928)

    Google Scholar 

  41. C.B. Willingham, W.J. Taylor, J.M. Pignocco, F.D. Rossini, J. Res. Natl. Bur. Stand. 35, 219 (1945)

    Google Scholar 

  42. E.R. Nicolini, Ann. Chim. 6, 582 (1951)

    Google Scholar 

  43. J.A. Beattie, S.W. Levine, D.R. Douslin, J. Am. Chem. Soc. 73, 4431 (1951)

    Google Scholar 

  44. D.A. Zanolini, Measurements of Vapor Pressures of Volatile Hydrocarbons (Masters Thesis, Pennsylvania State University, 1964)

  45. D.R. Douslin, Proc. Div. Ref., Am. Petrol. Inst. 50, 189 (1970)

    Google Scholar 

  46. A.G. Osborn, D.R. Douslin, J. Chem. Eng. Data 19, 114 (1974)

    Google Scholar 

  47. C. Horner, A. Hopfner, B. Schmeiser, Ber. Bunsenges. Phys. Chem. 79, 222 (1975)

    Google Scholar 

  48. I.A. Hossenlopp, D.W. Scott, J. Chem. Thermodyn. 13, 415 (1981)

    Google Scholar 

  49. A. Olivares Fuentes, J. Suarez Cansino, A. Trejo Redriquez, Rev. Mex. Fis. 30, 63 (1983)

    Google Scholar 

  50. H.N. Maia de Oliveira, J. Chem. Eng. Data 47, 1384 (2002)

    Google Scholar 

  51. R.W. Dornte, C.P. Smyth, J. Am. Chem. Soc. 52, 3546 (1930)

    Google Scholar 

  52. B.R. Carney, Pet. Ref. 21, 84 (1942)

    Google Scholar 

  53. I.S. Alexandrov, Fundamental Equations of State of Petroleum Hydrocarbons (Ph.D. Thesis, Kaliningrad State Technical University, 2012)

  54. C.D. Holcomb, J.W. Magee, W.M. Haynes, Density Measurements on Natural Gas Liquids (Gas Processors Association Research, Report RR-147, 1995)

  55. V.A. Mirskaya, I.K. Kamilov, Fluid Phase Equilib. 125, 169 (1996)

    Google Scholar 

  56. I.M. Abdulagatov, Experimental Results for the Isochoric Heat Capacity of n-Heptane and n-Octane, private communication (National Institute of Standards and Technology, Boulder, Colorado, 1998)

    Google Scholar 

  57. KhI Amirkhanov, B.G. Alibekov, D.I. Vikhrov, V.A. Mirskaya, L.N. Levina. High Temp. 9, 1211 (1971)

    Google Scholar 

  58. G.H. Messerly, R.M. Kennedy, J. Am. Chem. Soc. 62, 2988 (1940)

    Google Scholar 

  59. J.F. Messerly, G.B. Guthrie, S.S. Todd, H.L. Finke, J. Chem. Eng. Data 12, 338 (1967)

    Google Scholar 

  60. E.G. Richardson, R.I. Tait, J. Philos. Mag. 2, 441 (1957)

    ADS  Google Scholar 

  61. A. Lainez, J.A. Zollweg, W.B. Streett, J. Chem. Thermodyn. 22, 937 (1990)

    Google Scholar 

  62. E.A. Kelso, W.A. Felsing, J. Am. Chem. Soc. 62, 3132 (1940)

    Google Scholar 

  63. J. Schaffenger, On the Nonideal Behavior of Some Hydrocarbons in the Vapor Phase (Ph.D. Thesis, Ruhr-Universitat Rostock, 1963)

  64. D. Oeder, G.M. Schneider, Ber. Bunsenges. Phys. Chem. 74, 580 (1970)

    Google Scholar 

  65. B.A. Grigor’ev, D.S. Kurumov, Viniti Deposited, Publication (1981)

  66. T. Moriyoshi, T. Aono, J. Chem. Thermodyn. 20, 185 (1988)

    Google Scholar 

  67. S.S. Susnar, C.J. Budziak, H.A. Hamza, A.W. Neumann, Int. J. Thermophys. 13, 443 (1992)

    ADS  Google Scholar 

  68. P. Sauermann, K. Holzapfel, J. Oprznski, F. Kohler, W. Poot, T.W. de Loos, Fluid Phase Equilib. 112, 249 (1995)

    Google Scholar 

  69. J.L. Daridon, B. Lagourette, J.-P.E. Grolier, Int. J. Thermophys. 19, 145 (1998)

    Google Scholar 

  70. I. Brown, Aust. J. Sci. Res. A5, 530 (1952)

    ADS  Google Scholar 

  71. I.P.-C. Li, B.C.-Y. Lu, E.C. Chen, J. Chem. Eng. Data 18, 305 (1973)

    Google Scholar 

  72. A.H.N. Mousa, J. Chem. Thermodyn. 9, 1063 (1977)

    Google Scholar 

  73. S.A. Wieczorek, J. Stecki, J. Chem. Thermodyn. 10, 177 (1978)

    Google Scholar 

  74. J.M. Genco, A.S. Teja, W.B. Kay, J. Chem. Eng. Data 25, 355 (1980)

    Google Scholar 

  75. T.W. de Loos, W. Poot, J. de Swaan Arons, Fluid Phase Equilib. 42, 209 (1988)

    Google Scholar 

  76. H.S. Wu, S.I. Sandler, J. Chem. Eng. Data 33, 157 (1988)

    Google Scholar 

  77. E. Bich, T. Lober, J. Millat, Fluid Phase Equilib. 75, 149 (1992)

    Google Scholar 

  78. R.L. Schmidt, J.C. Randall, H.L. Clever, J. Phys. Chem. 70, 3912 (1966)

    Google Scholar 

  79. M.S. Rozhnov, Khim. Prom. 43, 48 (1967)

    Google Scholar 

  80. G.H. Findenegg, Monatshefte Chem. 101, 1081 (1970)

    Google Scholar 

  81. E. Aicart, G. Tardajos, M. Diaz Pena, J. Chem. Eng. Data 25, 140 (1980)

    Google Scholar 

  82. J.H. Dymond, K.J. Young, Int. J. Thermophys. 1, 331 (1980)

    ADS  Google Scholar 

  83. C.-H. Yu, F.-N. Tsai, J. Chem. Eng. Data 40, 601 (1995)

    Google Scholar 

  84. B. Garcia, R. Alcalde, S. Aparicio, J.M. Leal, Ind. Eng. Chem. Res. 41, 4399 (2002)

    Google Scholar 

  85. H.M. Huffman, G.S. Parks, M. Barmore, J. Am. Chem. Soc. 53, 3876 (1931)

    Google Scholar 

  86. D.R. Douslin, H.M. Huffman, J. Am. Chem. Soc. 68, 1704 (1946)

    Google Scholar 

  87. G. Waddington, D.R. Douslin, J. Am. Chem. Soc. 69, 2275 (1947)

    Google Scholar 

  88. R. Paramo, M. Zouine, C. Casanova, J. Chem. Eng. Data 47, 441 (2002)

    Google Scholar 

  89. J.W.M. Boelhouwer, Physica 34, 484 (1967)

    ADS  Google Scholar 

  90. V.N. Verveiko, G.A. Melnikov, YaF Melikhov, Teplofizicheskiye svoystva veshchestv i materialov 30, 5 (1991)

    Google Scholar 

  91. T.S. Khasanshin, A.P. Shchemelev, High Temp. 39, 60 (2001)

    Google Scholar 

  92. S.J. Ball, J.P.M. Trusler, Int. J. Thermophys. 22, 427 (2001)

    Google Scholar 

  93. L.B. Smith, J.A. Beattie, W.C. Kay, J. Am. Chem. Soc. 59, 1587 (1937)

    Google Scholar 

  94. W.B. Nichols, H.H. Reamer, B.H. Sage, Ind. Eng. Chem. 47, 2219 (1955)

    Google Scholar 

  95. J.W.M. Boelhouwer, Physica 26, 1021 (1960)

    ADS  Google Scholar 

  96. A.K. Doolittle, J. Chem. Eng. Data 9, 275 (1964)

    Google Scholar 

  97. A.Z. Golik, I.I. Adamenko, M.G. Makhno, Fiz. Zhidk. Sostoyaniya 10, 3 (1982)

    Google Scholar 

  98. A. Zawisza, J. Vejrosta, J. Chem. Thermodyn. 14, 239 (1982)

    Google Scholar 

  99. M.J.P. Muringer, N.J. Trappeniers, S.N. Biswas, Phys. Chem. Liq. 14, 273 (1985)

    Google Scholar 

  100. S. Toscani, P. Figuiere, H. Szwarc, J. Chem. Thermodyn. 21, 1263 (1989)

    Google Scholar 

  101. E.R. Smith, J. Res. Natl. Bur. Stand. 24, 229 (1940)

    Google Scholar 

  102. A.F. Forziati, W.R. Norris, F.D. Rossini, J. Res. Natl. Bur. Stand. 43, 555 (1949)

    Google Scholar 

  103. L.A. Weber, J. Chem. Eng. Data 45, 173 (2000)

    Google Scholar 

  104. M.B. Ewing, J.C.S. Ochoa, J. Chem. Eng. Data 50, 1543 (2005)

    Google Scholar 

  105. P.M. Christopher, W.L.S. Laukhuf, C.A. Plank, J. Chem. Eng. Data 21, 443 (1976)

    Google Scholar 

  106. K. Stephan, H. Hildwein, Dechema 4, 1/2 (1987)

  107. H. Kahl, T. Wadewitz, J. Winkelmann, J. Chem. Eng. Data 48, 580 (2003)

    Google Scholar 

  108. J.L. San Jose, G. Mellinger, R.C. Reid, J. Chem. Eng. Data 21, 414 (1976)

    Google Scholar 

  109. B. Kalinowska, J. Jedlinska, W. Woycicki, J. Stecki, J. Chem. Thermodyn. 12, 891 (1980)

    Google Scholar 

  110. M. Zabransky, V. Ruzicka Jr, J. Phys. Chem. Ref. Data 23, 55 (1994)

    ADS  Google Scholar 

  111. N.S. Osborne, D.C. Ginnings, J. Res. Nat. Bur. Stand. 39, 453 (1947)

    Google Scholar 

  112. L. Becker, O. Aufderhaar, J. Gmehling, J. Chem. Eng. Data 45, 661 (2000)

    Google Scholar 

  113. N.G. Polikhronidi, I.M. Abdulagatov, R.G. Batyrova, Fluid Phase Equilib. 201, 269 (2002)

    Google Scholar 

  114. R. Kling, E. Nicolini, J. Tissot, Rech. Aeronaut. 31, 31 (1953)

    Google Scholar 

  115. W.A. Felsing, G.M. Watson, J. Am. Chem. Soc. 64, 1822 (1942)

    Google Scholar 

  116. J.H. Dymond, J.D. Isdale, N.F. Glen, Fluid Phase Equilib. 20, 305 (1985)

    Google Scholar 

  117. T.S. Banipal, S.K. Garg, J.C. Ahluwalia, J. Chem. Thermodyn. 23, 923 (1991)

    Google Scholar 

  118. Y. Tanaka, H. Hosokawa, H. Kubota, T. Makita, Int. J. Thermophys. 12, 245 (1991)

    ADS  Google Scholar 

  119. A.R.H. Goodwin, C.H. Bradsell, L.S. Toczylkin, J. Chem. Thermodyn. 28, 637 (1996)

    Google Scholar 

  120. A.G.A. Badalyan, A.S. Keramidi, D.S. Kurumov, Izv. Vyssh. Uchebn. Zaved., Neft Gaz 29, 54 (1986)

    ADS  Google Scholar 

  121. P. Gierycz, J. Gregorowicz, S. Malanowski, J. Chem. Thermodyn. 20, 385 (1988)

    Google Scholar 

  122. A. Dejoz, V. Gonzalez-Alfaro, P.J. Miguel, M.I. Vazquez, J. Chem. Eng. Data 41, 93 (1996)

    Google Scholar 

  123. M.B. Ewing, J.C. Sanchez Ochoa, Fluid Phase Equilib. 210, 277 (2003)

    Google Scholar 

  124. T.R. Das, N.R. Kuloor, Indian J. Technol. 5, 51 (1967)

    Google Scholar 

  125. C.C. Chappelow, P.S. Snyder, J. Winnick, J. Chem. Eng. Data 16, 440 (1971)

    Google Scholar 

  126. J.F. Connolly, G.A. Kandalic, J. Chem. Eng. Data 7, 137 (1962)

    Google Scholar 

  127. H.L. Finke, M.E. Gross, G. Waddington, H.M. Huffman, J. Am. Chem. Soc. 76, 333 (1954)

    Google Scholar 

  128. T. Takagi, H. Teranishi, Fluid Phase Equilib. 20, 315 (1985)

    Google Scholar 

  129. Z.S. Ding, J. Alliez, C. Boned, P. Xans, Meas. Sci. Technol. 8, 154 (1997)

    ADS  Google Scholar 

  130. L.T. Carmichael, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 45, 2697 (1953)

    Google Scholar 

  131. J.D. White, F.W. Rose, J. Res. Natl. Bur. Stand. 7, 907 (1931)

    Google Scholar 

  132. H.-I. Paul, J. Krug, H. Knapp, Thermochim. Acta 108, 9 (1986)

    Google Scholar 

  133. J. Ortega, C. Gonzalez, S. Galvan, J. Chem. Eng. Data 46, 904 (2001)

    Google Scholar 

  134. T. Grindley, J.E. Lind Jr, J. Chem. Phys. 68, 5046 (1978)

    ADS  Google Scholar 

  135. T. Plebanski, M. Wozniak, K. Wilanowska, Nauchn. Appar. 1, 47 (1986)

    Google Scholar 

  136. H.I. Amirkhanov, Isochoric Heat Capacity and Other Caloric Properties of the Hydrocarbons of Methane Series (Makhachkala, Dagestan, 1981)

    Google Scholar 

  137. G.S. Parks, H.M. Huffman, S.A. Thomas, J. Am. Chem. Soc. 52, 1032 (1930)

    Google Scholar 

  138. C.A. Tovar, E. Carballo, C.A. Cerdeirina, J.L. Legido, L. Romani, Int. J. Thermophys. 18, 761 (1997)

    ADS  Google Scholar 

  139. B.S. Kiryakov, Acoustic and Elastic Properties of n-Paraffins at Pressures up to 2000 at (Ph.D. Thesis, Kursk State Pedagogical Institute, 1981)

  140. S. Lago, P.A. Giuliano Albo, D. Madonna Ripa, Int. J. Thermophys. 27, 1083 (2006)

    ADS  Google Scholar 

  141. B.H. Sage, H.M. Lavender, W.N. Lacey, Ind. Eng. Chem. 32, 743 (1940)

    Google Scholar 

  142. H.H. Reamer, R.H. Olds, B.H. Sage, W.N. Lacey, Ind. Eng. Chem. 34, 1526 (1942)

    Google Scholar 

  143. P.S. Snyder, J. Winnick, in Proceedings of 5th Symposium on Thermophysical Properties, vol. 5 (American Society of Mechanical Engineers, New York, 1970), pp. 115–129

  144. M. Gehrig, H. Lentz, J. Chem. Thermodyn. 15, 1159 (1983)

    Google Scholar 

  145. D.R. Caudwell, J.P.M. Trusler, V. Vesovic, W.A. Wakeham, Int. J. Thermophys. 25, 1339 (2004)

    ADS  Google Scholar 

  146. A. Zuniga-Moreno, L.A. Galicia-Luna, L.E. Camacho-Camacho, J. Chem. Eng. Data 50, 1030 (2005)

    Google Scholar 

  147. R.D. Chirico, A. Nguyen, W.V. Steele, M.M. Strube, J. Chem. Eng. Data 34, 149 (1989)

    Google Scholar 

  148. D.L. Morgan, R. Kobayashi, Fluid Phase Equilib. 97, 211 (1994)

    Google Scholar 

  149. E.C. Bingham, H.J. Fornwalt, J. Rheol. 1, 372 (1930)

    ADS  Google Scholar 

  150. J.H. Dymond, K.J. Young, Int. J. Thermophys. 2, 237 (1981)

    ADS  Google Scholar 

  151. J.A. Gates, R.H. Wood, J.C. Cobos, C. Casanova, A.H. Roux, G. Roux-Desgranges, J.P.E. Grolier, Fluid Phase Equilib. 27, 137 (1986)

    Google Scholar 

  152. J. Peleteiro, D. Gonzalez-Salgado, C.A. Cerdeirina, L. Romani, J. Chem. Thermodyn. 34, 485 (2002)

    Google Scholar 

  153. T.M. Aminabhavi, B. Gopalakrishna, J. Chem. Eng. Data 39, 529 (1994)

    Google Scholar 

  154. L.M. Casas, A. Tourino, B. Orge, G. Marino, M. Iglesias, J. Tojo, J. Chem. Eng. Data 47, 887 (2002)

    Google Scholar 

  155. R. Landau, A. Wuerflinger, Ber. Bunsen Ges. Phys. Chem. 84, 895 (1980)

    Google Scholar 

  156. D.L. Camin, F.D. Rossini, J. Phys. Chem. 59, 1173 (1955)

    Google Scholar 

  157. Anonymous, Properties of Hydrocarbons of High Molecular Weight (American Petroleum Institute Research Project 42, Pennsylvania State University, 1968)

  158. A.I. Vogel, J. Chem. Soc. 146, 133 (1946)

    Google Scholar 

  159. M. Garcia, C. Rey, V.P. Villar, J.R. Rodriguez, J. Chem. Eng. Data 33, 46 (1988)

    Google Scholar 

  160. O.Z. Golik, I.I. Ivanova, Zh Fiz. Khim. 36, 1768 (1962)

    Google Scholar 

  161. Y.P. Melikhov, Ultrasound and Thermodynamic Properties of Substances (Kursk State Pedagogical Institute, Kursk, Russia, 1985)

    Google Scholar 

  162. F. Plantier, J.-L. Daridon, B. Lagourette, C. Boned, High Temp.-High Press. 32, 305 (2000)

    Google Scholar 

  163. W.G. Cutler, R.H. McMickle, W. Webb, R.W. Schlessler, J. Chem. Phys. 29, 727 (1958)

    ADS  Google Scholar 

  164. P. Gierycz, M. Rogalski, S. Malanowski, Fluid Phase Equilib. 22, 107 (1985)

    Google Scholar 

  165. D. Bessieres, H. Saint-Guirons, J.-L. Daridon, High Press. Res. 18, 279 (2000)

    ADS  Google Scholar 

  166. M.R. Fenske, W.G. Braun, R.V. Wiegand, D. Quiggle, R.H. McCormick, D.H. Rand, Ann. Chem. 19, 700 (1947)

    Google Scholar 

  167. C. Viton, M. Chavret, E. Behar, J. Jose, Int. Electron. J. Phys.-Chem. Data 2, 215 (1996)

    Google Scholar 

  168. R.W. Schiessler, C.H. Herr, A.W. Rytina, C.A. Weisel, F. Fischl, R.L. McLaughlin, H.H. Kuehner, Proc. Am. Pet. Inst., Sect. 3 26, 254 (1946)

    Google Scholar 

  169. J. Wu, Z. Shan, A.-F.A. Asfour, Fluid Phase Equilib. 143, 263 (1998)

    Google Scholar 

  170. J. Peleteiro, D. Gonzalez-Salgado, C.A. Cerdeirina, J.L. Valencia, L. Romani, Fluid Phase Equilib. 191, 83 (2001)

    Google Scholar 

  171. A.A. Gerasimov, I.S. Alexandrov, B.A. Grigor’ev, E.B. Grigor’ev, Defense Complex - Scientific and Technical Progress of Russia 1, 43 (2001)

    Google Scholar 

  172. P. Gouel, Bull. Cent. Rech. Explor.- Prod. Elf-Aquitaine 2, 211 (1978)

    Google Scholar 

  173. K. Holzapfel, G. Goetze, A.M. Demiriz, F. Kohler, Int. Data Ser., Sel. Data Mixtures, Ser. A 30,(1987)

  174. E. Gawronska, L. Dordain, J.-Y. Coxam, J.R. Quint, J.-P. Grolier, J. Chem. Eng. Data 40, 1257 (1995)

    Google Scholar 

  175. P. Kneisl, J.W. Zondlo, J. Chem. Eng. Data 32, 11 (1987)

    Google Scholar 

  176. F. Krafft, Ber. Dtsch. Chem. Ges. 15, 1687 (1882)

    Google Scholar 

  177. G. Calingaert, H.A. Beatty, R.C. Kuder, G.W. Thoson, Ind. Eng. Chem. 33, 103 (1941)

    Google Scholar 

  178. V.V. Roshchupkin, Nek. Vopr. Fiz. Tekh. Yad. Reakt. 151, (1965)

  179. J.L. Daridon, B. Lagourette, High Temp.-High Press. 32, 83 (2000)

    Google Scholar 

  180. J.M. Pardo, C.A. Tovar, D. Gonzalez, E. Carballo, L. Romani, J. Chem. Eng. Data 46, 212 (2001)

    Google Scholar 

  181. J.L. Daridon, H. Carrier, B. Lagourette, Ind. Eng. Chem. 23, 697 (2002)

    Google Scholar 

  182. S. Landa, J. Romovacek, H. Romovackova, Chem. Listy 49, 313 (1955)

    Google Scholar 

  183. P.M. Diaz Pena, G. Tardajos, J. Chem. Thermodyn. 10, 19 (1978)

    Google Scholar 

  184. J.H. Dymond, K.J. Young, J.D. Isdale, J. Chem. Thermodyn. 11, 887 (1979)

    Google Scholar 

  185. J.S. Chang, M.J. Lee, H.M. Lin, J. Chem. Eng. Data 43, 233 (1998)

    Google Scholar 

  186. P.L. Mills, R.L. Fento, J. Chem. Eng. Data 32, 266 (1987)

    Google Scholar 

  187. M.F. Grenier-Loustalot, M. Potin-Gautier, P. Grenier, Anal. Lett. 14, 1335 (1981)

    Google Scholar 

  188. R.W. Schiessler, The Synthesis and Properties of Hydrocarbons of High Molecular Weight, American Petroleum Institute Research Project 42 (1947)

  189. H.S. Myers, M.R. Fenske, Ind. Eng. Chem. 47, 1652 (1955)

    Google Scholar 

  190. Buckland, W.F. Seyer, Personal Commun. Dec. 21 (1950)

  191. P. Gray, P.L. Smith, J. Chem. Soc. 769, (1954)

  192. J.F. Eykman, Recl. Trav. Chim. Pays-Bas 15, 52 (1986)

    Google Scholar 

  193. J.W.J. McKinney, Am. Chem. Soc. 46, 968 (1924)

    Google Scholar 

  194. L.T. Chu, C. Sindilariu, A. Freilich, V. Fried, Can. J. Chem. 64, 481 (1986)

    Google Scholar 

  195. K. Sasse, J. Jose, J.-C. Merlin, Fluid Phase Equilib. 42, 287 (1988)

    Google Scholar 

  196. J.B. Rodden, C. Erkey, A. Akgerman, J. Chem. Eng. Data 33, 344 (1988)

    Google Scholar 

  197. W.M. Mazee, Recl. Trav. Chim. 67, 197 (1948)

    Google Scholar 

  198. A.W. Schmidt, Ber. Dtsch. Chem. Ges. B75, 1399 (1942)

    Google Scholar 

  199. E.F. Meyer, K.S. Stec, J. Am. Chem. Soc. 93, 5451 (1971)

    Google Scholar 

  200. D.L. Wakefield, K.N. Marsh, Int. J. Thermophys. 8, 649 (1987)

    ADS  Google Scholar 

  201. H.I. Waterman, J.J. Leendertse, D.W. Van Krevelen, Rev. Pet. Technol. (London) 25, 801 (1939)

    Google Scholar 

  202. E.W. Lemmon, R. Span, J. Chem. Eng. Data 51, 785 (2006)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Eric W. Lemmon at the National Institute of Standards and Technology for his help in collecting experimental data and for his valuable comments. The authors are grateful to the Russian Foundation for Basic Research (RFBR) for financial support under Grant No. 09-08-00683a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Alexandrov.

Appendices

Appendix 1: Definitions of Common Thermodynamic Properties and their Relation to the reduced Helmholtz Energy

The functions used for calculating pressure \((p)\), compressibility factor \((Z)\), internal energy \((u)\), enthalpy \((h)\), entropy \((s)\), Gibbs energy \((g)\), isochoric heat capacity \((c_{v})\), isobaric heat capacity \((c_{p})\), Joule–Thomson coefficient (\(\mu \)), and the speed of sound \((w) \) from Eq. 1 are given below.

$$\begin{aligned} p&= \rho ^{2}\left( {\frac{{\partial a}}{{\partial \rho }}} \right) _{T} =\rho RT\left[ {1+\delta \;\left( {\frac{{\partial \alpha ^{{\text {r}}}}}{{\partial \delta }}}\right) _{\tau }}\right] \end{aligned}$$
(11)
$$\begin{aligned} Z&= \frac{p}{{\rho RT}}=1+\delta \,\left( {\frac{{\partial \alpha ^{{\text {r}}}}}{{\partial \delta }}}\right) _{\tau } \end{aligned}$$
(12)
$$\begin{aligned} \frac{u}{RT}&= \frac{a+Ts}{RT}=\tau \left[ {\left( {\frac{\partial \alpha ^{0}}{\partial \tau }}\right) _\delta +\left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \tau }}\right) _\delta }\right] \end{aligned}$$
(13)
$$\begin{aligned} \frac{h}{RT}&= \frac{u+pv}{RT}=\tau \left[ {\left( {\frac{\partial \alpha ^{0}}{\partial \tau }}\right) _\delta +\left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \tau }}\right) _\delta }\right] +\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau +1 \end{aligned}$$
(14)
$$\begin{aligned} \frac{s}{R}&= -\frac{1}{R}\left( {\frac{\partial a}{\partial T}}\right) _\rho =\tau \left[ {\left( {\frac{\partial \alpha ^{0}}{\partial \tau }}\right) _\delta +\left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \tau }}\right) _\delta }\right] -\alpha ^{0}-\alpha ^{\mathrm{r}} \end{aligned}$$
(15)
$$\begin{aligned} \frac{g}{RT}&= \frac{h-Ts}{RT}=1+\alpha ^{0}+\alpha ^{\mathrm{r}}+\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau \end{aligned}$$
(16)
$$\begin{aligned} \frac{c_v}{R}&= \frac{1}{R}\left( {\frac{\partial u}{\partial T}}\right) _\rho =-\tau ^{2}\;\left[ {\left( {\frac{\partial ^{2}\alpha ^{0}}{\partial \tau ^{2}}}\right) _\delta +\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \tau ^{2}}} \right) _\delta }\right] \end{aligned}$$
(17)
$$\begin{aligned} \frac{c_p}{R}&= \frac{1}{R}\left( {\frac{\partial h}{\partial T}}\right) _p =\frac{c_v}{R}+\;\frac{\left[ {1+\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }} \right) _\tau -\delta \tau \left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta \partial \tau }}\right) } \right] ^{2}}{\left[ {1+2\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau +\delta ^{2}\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta ^{2}}} \right) _\tau }\right] } \end{aligned}$$
(18)
$$\begin{aligned}&\mu R\rho =R\rho \left( {\frac{\partial T}{\partial p}}\right) _h \nonumber \\&=\frac{-\left( {\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau +\delta ^{2}\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta ^{2}}}\right) _\tau +\delta \tau \left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta \partial \tau }}\right) }\right) }{\left( {1+\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau -\delta \tau \left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta \partial \tau }}\right) }\right) ^{2}-\tau ^{2}\left( {\left. {\left( {\frac{\partial ^{2}\alpha ^{0}}{\partial \tau ^{2}}}\right) _\delta +\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \tau ^{2}}}\right) _\delta }\right) \left( {1+2\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau +\delta ^{2}\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta ^{2}}}\right) _\tau }\right. }\right) }\nonumber \\ \end{aligned}$$
(19)
$$\begin{aligned} \frac{w^{2}M}{RT}&= \frac{M}{RT}\left( {\frac{\partial p}{\partial \rho }}\right) _s =1+2\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau +\delta ^{2}\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta ^{2}}}\right) _\tau \nonumber \\&-\frac{\left[ {1+\delta \left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau -\delta \tau \left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta \partial \tau }}\right) }\right] ^{2}}{\tau ^{2}\left[ {\left( {\frac{\partial ^{2}\alpha ^{0}}{\partial \tau ^{2}}}\right) _\delta +\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \tau ^{2}}} \right) _\delta }\right] } \end{aligned}$$
(20)

The fugacity coefficient and second and third virial coefficients are given in the following equations:

$$\begin{aligned} \varphi&= \exp \left[ {Z-1-\ln \left( Z\right) +\alpha ^{\mathrm{r}}}\right] \end{aligned}$$
(21)
$$\begin{aligned} B\left( T\right)&= \mathop {\lim }\limits _{\delta \rightarrow 0} \left[ {\frac{1}{\rho _c}\left( {\frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }}\right) _\tau }\right] \end{aligned}$$
(22)
$$\begin{aligned} C\left( T\right)&= \mathop {\lim }\limits _{\delta \rightarrow 0} \left[ {\frac{1}{\rho _c^{2}}\left( {\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta ^{2}}}\right) _\tau } \right] \end{aligned}$$
(23)

Other derived properties, given below, include the first derivative of pressure with respect to density at constant temperature \((\partial p/\partial \rho )_{T}\), the second derivative of pressure with respect to density at constant temperature \((\partial ^{2} p/\partial \rho ^{2})_{T}\), and the first derivative of pressure with respect to temperature at constant density \((\partial p/\partial T)_{\rho }\).

$$\begin{aligned} \left( {\frac{{\partial p}}{{\partial \rho }}}\right) _{T}&= RT\left[ {1+2\delta \;\left( {\frac{{\partial \alpha ^{{\text {r}}} }}{{\partial \delta }}}\right) _{\tau }\;+\delta ^{2}\;\left( {\frac{{\partial ^{2}\alpha ^{{\text {r}}}}}{{\partial \delta ^{2} }}}\right) _{\tau }}\right] \end{aligned}$$
(24)
$$\begin{aligned} \left( {\frac{{\partial ^{2}p}}{{\partial \rho ^{2}}}}\right) _{T}&= \frac{{RT}}{\rho }\left[ {2\delta \;\left( {\frac{{\partial \alpha ^{{\text {r}}}}}{{\partial \delta }}}\right) _{\tau }\;+4\delta ^{2}\;\left( {\frac{{\partial ^{2}\alpha ^{{\text {r}}} }}{{\partial \delta ^{2}}}}\right) _{\tau }+\delta ^{3}\;\left( {\frac{{\partial ^{3}\alpha ^{{\text {r}}}}}{{\partial \delta ^{3} }}}\right) _{\tau }}\right] \end{aligned}$$
(25)
$$\begin{aligned} \left( {\frac{{\partial p}}{{\partial T}}}\right) _{\rho }&= R\rho \left[ {1+\delta \;\left( {\frac{{\partial \alpha ^{{\text {r}}} }}{{\partial \delta }}}\right) _{\tau }\;-\delta \tau \;\left( {\frac{{\partial ^{2}\alpha ^{{\text {r}}}}}{{\partial \delta \partial \tau }}}\right) }\right] \end{aligned}$$
(26)

The derivatives of the residual Helmholtz energy are given in the following equations.

$$\begin{aligned} \delta \frac{\partial \alpha ^{\mathrm{r}}}{\partial \delta }&= \sum _{k=1}^6 {N_k \delta ^{d_k}\tau ^{t_k}d_k} +\sum _{k=7}^{14} {N_k \delta ^{d_k}\tau ^{t_k}\exp \left( {-\delta ^{l_k}}\right) \;\left[ {d_k -l_k \delta ^{l_k}}\right] } \end{aligned}$$
(27)
$$\begin{aligned} \delta ^{2}\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \delta ^{2}}&= \sum _{k=1}^6 {N_k \delta ^{d_k}\tau ^{t_k}\left[ {d_k \left( {d_k -1}\right) }\right] }+\sum _{k=7}^{14} N_k \delta ^{d_k}\tau ^{t_k}\nonumber \\&\exp \left( {-\delta ^{l_k}}\right) \;\left[ {\left( {d_k -l_k \delta ^{l_k}}\right) \left( {d_k -1-l_k \delta ^{l_k}}\right) -l_k^{2}\delta ^{l_k}}\right] \qquad \end{aligned}$$
(28)
$$\begin{aligned} \delta ^{3}\frac{\partial ^{3}\alpha ^{\mathrm{r}}}{\partial \delta ^{3}}&= \sum _{k=1}^6 {N_k \delta ^{d_k}\tau ^{t_k}\left[ {d_k \left( {d_k -1}\right) \left( {d_k -2}\right) }\right] }+\sum _{k=7}^{14} N_k \delta ^{d_k}\tau ^{t_k}\exp \left( {-\delta ^{l_k}}\right) \nonumber \\&\left\{ d_k \left( {d_k -1}\right) \left( {d_k -2}\right) +l_k \delta ^{l_k}\left[ -2+6d_k -3d_k^2 -3d_k l_k \right. \right. \nonumber \\&\left. \left. +3l_k-l_k^2\right] +3l_k^2 \delta ^{2l_k}\left[ {d_k -1+l_k}\right] -l_k^3 \delta ^{3l_k}\right\} \end{aligned}$$
(29)
$$\begin{aligned} \tau \frac{\partial \alpha ^{\mathrm{r}}}{\partial \tau }&= \sum _{k=1}^6 {N_k \delta ^{d_k}\tau ^{t_k}t_k} +\sum _{k=7}^{14} {N_k \delta ^{d_k}\tau ^{t_k}\exp \left( {-\delta ^{l_k}} \right) \;t_k} \end{aligned}$$
(30)
$$\begin{aligned} \tau ^{2}\frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \tau ^{2}}\!&= \!\sum _{k=1}^6 {N_k \delta ^{d_k }\tau ^{t_k}\left[ {t_k \left( {t_k \!-\!1}\right) }\right] } \!+\!\sum _{k=7}^{14} {N_k \delta ^{d_k}\tau ^{t_k}\exp \left( {\!-\!\delta ^{l_k}}\right) \;\left[ {t_k \left( {t_k \!-\!1}\right) }\right] }\qquad \qquad \end{aligned}$$
(31)
$$\begin{aligned} \tau \delta \frac{\partial ^{2}\alpha ^{\mathrm{r}}}{\partial \tau \;\partial \delta }\!&= \!\sum _{k=1}^6 {N_k \delta ^{d_k}\tau ^{t_k}\left[ {d_k t_k}\right] } \!+\!\sum _{k=7}^{14} {N_k \delta ^{d_k}\tau ^{t_k}\exp \left( {\!-\!\delta ^{l_k}}\right) } \;\left[ {t_k \left( {d_k \!-\!l_k \delta ^{l_k}} \right) }\right] \end{aligned}$$
(32)
$$\begin{aligned} \delta \tau ^{2}\frac{\partial ^{3}\alpha ^{\mathrm{r}}}{\partial \delta \partial \tau ^{2}}&= \sum _{k=1}^6 {N_k \delta ^{d_k}\tau ^{t_k}\left[ {d_k t_k \left( {t_k -1}\right) }\right] }\nonumber \\&+\sum _{k=7}^{14} {N_k \delta ^{d_k}\tau ^{t_k}\exp \left( {-\delta ^{l_k}}\right) \;\left[ {t_k \left( {t_k -1}\right) \left( {d_k -l_k \delta ^{l_k}}\right) }\right] } \end{aligned}$$
(33)

Appendix 2: Comparison of Thermodynamic Properties of Selected \(n\)-alkanes \((\hbox {C}_{7},\,\hbox {C}_{8},\,\hbox {C}_{10},\,\hbox {C}_{12})\) calculated by Individual Equations of State with the Generalized Fundamental Equation of State, Eq. 3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, I., Gerasimov, A. & Grigor’ev, B. Generalized Fundamental Equation of State for the Normal Alkanes \((\hbox {C}_{5}{-}\hbox {C}_{50})\) . Int J Thermophys 34, 1865–1905 (2013). https://doi.org/10.1007/s10765-013-1512-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1512-1

Keywords

Navigation