Advertisement

International Journal of Thermophysics

, Volume 34, Issue 8–9, pp 1569–1578 | Cite as

Thermal Parameter Extraction of a Multilayered System by a Genetic Algorithm

  • M. Kuriakose
  • M. Depriester
  • M. Mascot
  • S. Longuemart
  • D. Fasquelle
  • J. C. Carru
  • A. Hadj Sahraoui
Article

Abstract

Submicron multilayer systems are nowadays used in many common applications such as electronic systems, fuel cells, etc. A knowledge of the layer’s thermal properties are of main interest for thermal management in such systems. Thus, the aim of this study is to investigate thermal parameters of a commercially available multilayered system (Pt–Ti–SiO\(_{2}\)–Si) using the photothermal radiometry technique. Here, a genetic algorithm is used for extracting thermal parameters of this typical four-layer wafer system. The obtained results can be used as a reference for thermal studies of thin layers coated on the top of such wafers, where they act as a deposition substrate.

Keywords

Depth profiling Genetic algorithm Multilayers  Photothermal radiometry Submicron layers 

Notes

Acknowledgments

The authors would like to acknowledge the financial support for thesis work by the French Ministry of Research and to thank equally Benoit Escorne for his technical support.

References

  1. 1.
    W.A. McGahan, K.D. Cole, J. Appl. Phys. 72, 1362 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    T. Elperin, G. Rudin, Int. J. Thermophys. 30, 1598 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Power, M.C. Prystay, Appl. Spectrosc. 49, 709 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    R. Celorrio, E. Apiňaniz, A. Mendioroz, A. Salazar, A. Mandelis, J. Appl. Phys. 107, 083519 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    A. Mandelis, M. Munidasa, L. Nicolaides, NDT &E Int. 32, 437 (1999)CrossRefGoogle Scholar
  6. 6.
    E. Apiñaniz, A. Mendioroz, A. Salazar, R. Celorrio, J. Appl. Phys. 108, 064905 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M. Munidasa, F. Funak, A. Mandelis, J. Appl. Phys. 83, 3495 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M. Chirtoc, J. Gibkes, H.G. Walther, A. Christ, J.S. Antoniow, D. Bicanic, Z. Bozoki, G. Szabo, B. Bein, J. Pelzl, M. Kleebauer, H. Bader, M. Marinelli, Anal. Sci. 17, s567 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Karanicolas, S.W. Fu, J.F. Power, Appl. Phys. B 71, 217 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    P. Dorr, C. Gruss, J. Appl. Phys. 89, 7888 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    L. Nicolaides, A. Mandelis, Opt. Express 7, 519 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    C. Glorieux, R. Li Voti, J. Thoen, M. Bertolotti, C. Sibilia, J. Appl. Phys. 85, 7059 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    C. Glorieux, J. Thoen, J. Appl. Phys. 80, 6510 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    R. Li Voti, Rom. Rep. Phys. 64, 446 (2012)Google Scholar
  15. 15.
    S. Orain, Y. Scudeller, S. Garcia, T. Brousse, Int. J. Heat Mass Transf. 44, 3973 (2001)CrossRefMATHGoogle Scholar
  16. 16.
    C. Glorieux, R. Li Voti, J. Thoen, M. Bertolotti, C. Sibilia, Inverse Prob. 15, 1149 (1999)ADSCrossRefMATHGoogle Scholar
  17. 17.
    R. Kumar, D. Sharma, A. Kumar, J. Electr. Eng. Technol. 4, 19 (2009)CrossRefGoogle Scholar
  18. 18.
    R. Li Voti, C. Melchiori, C. Sibilia, M. Bertolotti, Anal. Sci. 17, s410 (2001)Google Scholar
  19. 19.
    R. Li Voti, C. Sibilia, M. Bertolotti, Int. J. Thermophys. 26, 1833 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    B. Popescu, Y. Scudeller, T. Brousse, B. Garnier, Superlattices Microstruct. 35, 239 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    X.W. Zhou, R.E. Jones, S. Aubry, Phys. Rev. B 81, 073304 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    B. Feng, Z. Li, X. Zhang, Thin Solid Films 517, 2803 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)ADSCrossRefGoogle Scholar
  24. 24.
    A. Mandelis, Diffusion-Wave Fields: Mathematical Methods and Green Functions (Springer, New York, 2001)CrossRefGoogle Scholar
  25. 25.
    J.A. Garcia, L. Nicolaides, P. Park, A. Mandelis, B. Farahkbahsh, Anal. Sci. 17, s89 (2001)CrossRefGoogle Scholar
  26. 26.
    A. Adili, N. Hasni, C. Kerkeni, S. Ben Nasrallah, Int. J. Therm. Sci. 49, 889 (2010)CrossRefGoogle Scholar
  27. 27.
    Y.S. Touloukian, Temperature Properties of High Temperature Solid Materials (Macmillan, New York, 1967)Google Scholar
  28. 28.
    D.D. Jackson, J. Geophys. Res. 81, 1027 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    K. Midttømme, E. Roaldset, Geoscience 4, 165 (1998)Google Scholar
  30. 30.
    X. Wang, Y. Yang, L. Zhu, J. Appl. Phys. 110, 024312 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J. Pelzl, S. Chotikaprakhan, D. Dietzel, B.K. Bein, E. Neubauer, M. Chirtoc, Eur. Phys. J. Spec. Top. 153, 335 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Kuriakose
    • 1
    • 2
    • 3
  • M. Depriester
    • 1
    • 2
    • 3
  • M. Mascot
    • 1
    • 2
    • 4
  • S. Longuemart
    • 1
    • 2
    • 3
  • D. Fasquelle
    • 1
    • 2
    • 4
  • J. C. Carru
    • 1
    • 2
    • 4
  • A. Hadj Sahraoui
    • 1
    • 2
    • 3
  1. 1.Univ Lille Nord de FranceLilleFrance
  2. 2.ULCOUDSMMDunkerqueFrance
  3. 3.UDSMMDunkerqueFrance
  4. 4.UDSMMCalaisFrance

Personalised recommendations