International Journal of Thermophysics

, Volume 34, Issue 8–9, pp 1712–1720 | Cite as

Laser-Excited Electronic and Thermal Elastic Vibrations in a Semiconductor Rectangular Plate

  • D. M. Todorović
  • B. Cretin
  • P. Vairac
  • Y. Q. Song
  • M. D. Rabasović
  • D. D. Markushev


Photoacoustic and photothermal effects can be important as driven mechanisms for micro-(opto)-electro-mechanical structures (MOEMS). A new approach for a producing a compact, lightweight, highly sensitive detector is provided by MOEMS technology, which is based on the elastic bending of microstructure generated by absorption of modulated optical power. The electronic and thermal elastic vibrations (the electronic deformation and thermoelastic mechanisms of elastic wave generation) in a semiconductor rectangular simply supported plate (3D geometry), photogenerated by a focused and intensity-modulated laser beam, were studied. The theoretical model for the elastic displacements space and frequency distribution by using the Green function method was given. The amplitude of the elastic bending in the rectangular plate was calculated and analyzed, including the thermalization and surface and volume recombination heat sources. The theoretical results were compared with the experimental data. These investigations are important for many practical experimental situations (atomic force microscopy, thermal microscopy, thermoelastic microscopy, etc.) and sensors and actuators.


Elastic bending Electronic and thermal elastic vibrations  Laser-generated ultrasound Micromechanical structures Photoacoustic  Photothermal 



This study was supported by the Ministry of Sciences and Technology Development, Republic of Serbia (the authors: D.M. Todorović, M.D. Rabasović, D.D. Markushev; the Project ON171016).


  1. 1.
    E.A. Wachter, T. Thundat, Rev. Sci. Instrum. 66, 3662 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Todorović, Rev. Sci. Instrum. 74, 578 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    Y. Song, B. Cretin, D.M. Todorović, P. Vairac, J. Phys. D Appl. Phys. 41, 155106 (2008)Google Scholar
  4. 4.
    D.M. Todorović, B. Cretin, Y. Song, P. Vairac, J. Appl. Phys. 107, 023516 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D.M. Todorović, Y. Song, J. Phys. Conf. Ser. 214, 012104 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Stearns, G.S. Kino, Appl. Phys. Lett. 47, 1048 (1985)ADSCrossRefGoogle Scholar
  7. 7.
    R.G. Stearns, G.S. Kino, in Photoacoustic and Thermal Wave Phenomena in Semiconductors, ed. by A. Mandelis (North-Holland, Amsterdam, 1987)Google Scholar
  8. 8.
    S. Timoshenko, Theory of Plates and Shells (McGraw-Hill, New York, 1940)MATHGoogle Scholar
  9. 9.
    J.N. Reddy, Theory and Analysis of Elastic Plates and Shells (CRC Press, Boca Raton, FL, 2007)Google Scholar
  10. 10.
    W. Nowacki, Thermoelasticity (Pergamon Press, Oxford, 1962)Google Scholar
  11. 11.
    B. Cretin, P. Vairac, Appl. Phys. Lett. 71, 2083 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    P. Vairac, B. Cretin, A.J. Kulik, Appl. Phys. Lett. 83, 3824 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • D. M. Todorović
    • 1
  • B. Cretin
    • 2
  • P. Vairac
    • 2
  • Y. Q. Song
    • 3
  • M. D. Rabasović
    • 4
  • D. D. Markushev
    • 4
  1. 1.Institute for Multidisciplinary Research, University of BelgradeBelgradeSerbia
  2. 2.FEMTO-STUniversité de Franche-Comté, ENSMM, UTBMBesançonFrance
  3. 3.MOE State Key Lab for Strength and Vibration, School of AerospaceXi’an Jiaotong UniversityXi’anPeople’s Republic of China
  4. 4.Institute of Physics, University of BelgradeBelgradeSerbia

Personalised recommendations