International Journal of Thermophysics

, Volume 35, Issue 9–10, pp 1757–1769 | Cite as

Assessment of Uncertainties in Calibration of Langavant Calorimeters

  • Bruno Hay
  • Jacques Hameury
  • Guillaume Davee
  • Marc Grelard


The semi-adiabatic method, commonly referred to as the Langavant method, is widely applied for routine measurements of the hydration heat of cements. This standardized method is applicable to all cements and hydraulic binders, whatever their chemical composition, with the exception of quick-setting cements. The calorimeters used to perform these hydration heat measurements must be previously calibrated by electrical substitution, in order to determine their coefficient of total heat loss \(\alpha \) and their heat capacity \(\mu \). LNE developed a facility enabling performance of the calibration of these Langavant calorimeters, in order to insure the traceability of the hydration heat measurements to basic quantities such as temperature, time, mass, and electrical quantities. Calibration results of a typical Langavant calorimeter are presented here. The measurement uncertainties of the parameters \(\alpha \) and \(\mu \) have been assessed according to the ISO/BIPM “Guide to the Expression of Uncertainty in Measurement.” The relative expanded uncertainties (\(k = 2\)) of the coefficient of total heat loss \(\alpha \) and the heat capacity \(\mu \) are estimated, respectively, to be about 0.7 % and 15 %.


Calibration Hydration heat Langavant calorimeter Metrology Uncertainty 


  1. 1.
    Z.P. Bazant, J.K. Kim, S.E. Jeon, J. Eng. Mech. 129, 21 (2003)CrossRefGoogle Scholar
  2. 2.
    M. Nasir Amin, J.S. Kim, J.K. Kim, Int. J. Struct. Eng. 1, 145 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Buffo-Lacarrière, A. Sellier, G. Escadeillas, A. Turatsinze, Cem. Concr. Res. 37, 131 (2007)CrossRefGoogle Scholar
  4. 4.
    M.I. Sanchez de Rojas, M. Frias, Cem. Concr. Res. 26, 203 (1996)CrossRefGoogle Scholar
  5. 5.
    N.Y. Mostafa, P.W. Brown, Thermochim. Acta 435, 162 (2005)CrossRefGoogle Scholar
  6. 6.
    V. Rahhal, R. Talero, Constr. Build. Mater. 23, 3367 (2009)CrossRefGoogle Scholar
  7. 7.
    T. Perraki, E. Kontori, S. Tsivilis, G. Kakali, Cem. Concr. Res. 32, 128 (2010)CrossRefGoogle Scholar
  8. 8.
    M. Said-Mansour, E. Kadri, S. Kenai, M. Ghrici, in Proceedings of ICCBT2008, International Conference on Construction and Building Technology (Kuala Lumpur, Malaysia, 2008), pp. 539–547Google Scholar
  9. 9.
    EN 196-8, Methods of Testing Cement—Part 8: Heat of Hydration—Solution Method (2010)Google Scholar
  10. 10.
    EN 196-9, Methods of Testing Cement—Part 9: Heat of Hydration—Semi-adiabatic Method (2010)Google Scholar
  11. 11.
    M. Balbas, J.I. Diaz, F. Gascon, A. Varade, Rev. Sci. Instrum. 62, 2795 (1991)CrossRefADSGoogle Scholar
  12. 12.
    JCGM 100:2008 (GUM 1995 with minor corrections), Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (2008)Google Scholar
  13. 13.
    M. Briffaut, G. Nahas, F. Benboudjema, J.-M. Torrenti, Numerical simulations of the QAB and Langavant semi-adiabatic tests: analysis and comparison with an experimental measurement campaign. Bulletin des Laboratoires des Ponts et Chaussées 278, 5 (2010)Google Scholar
  14. 14.
    E. Calvet, H. Prat, Recent Progress in Microcalorimetry (translated from French by H.A. Skinner). (Pergamon Press, Oxford, 1963)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bruno Hay
    • 1
  • Jacques Hameury
    • 1
  • Guillaume Davee
    • 1
  • Marc Grelard
    • 1
  1. 1.Laboratoire National de Metrologie et d’Essais, Laboratoire Commun de Metrologie (LNE-LCM)Scientific and Industrial Metrology CentreParisFrance

Personalised recommendations