Skip to main content
Log in

Inverse Identification of Temperature-Dependent Volumetric Heat Capacity by Neural Networks

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

An artificial neural network (NN)-based solution of the inverse heat conduction problem of identifying the temperature-dependent volumetric heat capacity function of a solid material is presented in this paper. The inverse problem was defined according to the evaluation of the BICOND thermophysical property measurement method. The volumetric heat capacity versus temperature function is to be determined using the measured transient temperature history of a single sensor. In this study, noiseless and noisy artificial measurements were generated by the numerical solution of the corresponding direct heat conduction problem. The inverse problem was solved by back-propagation and radial basis function type neural networks applying the whole history mapping approach. The numerical tests included the comparison of two different data representations of the network inputs (i.e., temperature vs. time and time vs. temperature) and accuracy analysis of the two network types with noiseless and noisy inputs. Based on the results presented, it can be stated that feed-forward NNs are powerful tools in a non-iterative solution of function estimation inverse heat conduction problems and they are likely to be very effective in evaluation of real measured temperature histories to determine the volumetric heat capacity as an arbitrary function of temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. In previous studies [20, 44] it was shown that the temperature history of the inner sensor is enough to determine one of the two material property functions.

  2. The generation of the \(\rho c_{p}(T)\) functions was not completely random as that would have resulted in non-physical functions. The functions were generated point by point, and the random picking of the next point had to meet certain restrictions for the actual derivative of the function.

References

  1. C. Yang, Int. J. Heat Mass Transf. 43, 1261 (2000)

    Article  MATH  Google Scholar 

  2. J. Zmywaczyk, Arch. Thermodyn. 27/2, 37 (2006)

    Google Scholar 

  3. S. Zhao, B. Zhang, S. Du, X. He, Int. J. Thermophys. 30, 2021 (2009)

    Article  ADS  Google Scholar 

  4. J. Zmywaczyk, Arch. Thermodyn. 27/3, 39 (2006)

    Google Scholar 

  5. V.T. Borukhov, V.I. Timoshpol’skii, J. Eng. Phys. Thermophys. 78, 695 (2005)

    Article  Google Scholar 

  6. C. Huang, J. Yan, Int. J. Heat Mass Transf. 38, 3433 (1995)

    Article  Google Scholar 

  7. J.V. Beck, B. Blackwell, C.R. St Clair Jr., Inverse Heat Conduction (Wiley, New York, 1985)

  8. M.N. Özisik, H.R.B. Orlande, Inverse Heat Transfer: Fundamentals and Applications (Taylor & Francis, New York, 2000)

    Google Scholar 

  9. S. Vakili, M.S. Gadala, Numer. Heat Transf. B 56, 119 (2009)

    Article  ADS  Google Scholar 

  10. N. Tian, Numer. Heat Transf. B 60, 73 (2011)

    Article  ADS  Google Scholar 

  11. M. Raudensky, J. Horsky, J. Krejsa, L. Slama, Int. J. Numer. Methods Heat Fluid Flow 6, 19 (1996)

    Article  MATH  Google Scholar 

  12. S. Garcia, J. Guynn, E.P. Scott, Numer. Heat Transf. A 33, 149 (1998)

    Article  ADS  Google Scholar 

  13. A. Imani, A.A. Ranjbar, M. Esmkhani, Inverse Prob. Sci. Eng. 14, 767 (2006)

    Google Scholar 

  14. A. Ranjbar, M. Famouri, A. Imani, Int. J. Numer. Methods Heat Fluid Flow 20, 201 (2010)

    Article  Google Scholar 

  15. Q. Guo, D. Shen, Y. Guo, C.H. Lai, Int. J. Comput. Math. 84, 241 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. S.W. Phillips, W. Aquino, W.M. Chirdon, J. Eng. Mech. 133, 1341 (2007)

    Article  Google Scholar 

  17. A. Adili, N. Hasni, C. Kerkeni, S. Ben Nashrallah, Int. J. Therm. Sci. 49, 889 (2010)

    Article  Google Scholar 

  18. V. Gorbatov, Yu. Okulovskii, P. Skripov, A. Smotritskiy, A. Starostin, J. Eng. Thermophys. 19, 144 (2010)

    Article  Google Scholar 

  19. B. Czél, Gy. Gróf, Int. J. Thermophys. 30, 1975 (2009)

  20. B. Czél, Gy. Gróf, Int. J. Heat Mass Transf. 55, 4254 (2012)

  21. B. Czél, Gy. Gróf, Int. J. Thermophys. 33, 1023 (2012)

    Google Scholar 

  22. B. Czél, Gy. Gróf, Period. Polytech. Mech. Eng. (2008). doi:10.3311/pp.me.2008-2.01

  23. B. Czél, Gy. Gróf, L. Kiss. Jpn. J. Appl. Phys. (2011). doi:10.1143/JJAP.50.11RE05

  24. M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design (PWS Publishing, Boston, 1996)

    Google Scholar 

  25. S. Deng, Y. Hwang, Int. J. Heat Mass Transf. 49, 4732 (2006)

    Article  MATH  Google Scholar 

  26. S. Deng, Y. Hwang, Int. J. Heat Mass Transf. 50, 2089 (2007)

    Article  MATH  Google Scholar 

  27. F.T. Mikki, E. Issamoto, J.I. da Luz, P.P.B. de Oliveira, H.F. Campos-Velho, J.D.S. da Silva, A neural network approach in a backward heat conduction problem, in Proceedings of the Brazilian Conference on Neural Networks (Sao Jose dos Campos, Brazil, 1999), pp. 19–24

  28. S.S. Sablani, Chem. Eng. Process. 40, 363 (2001)

    Article  Google Scholar 

  29. S.S. Sablani, A. Kacimov, J. Perret, A.S. Mujumdar, A. Campo, Int. J. Heat Mass Transf. 48, 665 (2005)

    Article  MATH  Google Scholar 

  30. S. Lecoeuche, G. Mercere, S. Lalot, Inverse Prob. Sci. Eng. 14, 97 (2006)

    Google Scholar 

  31. L. Zhang, L. Li, H. Ju, B. Zhu, Energy Convers. Manag. 51, 1898 (2010)

    Article  Google Scholar 

  32. K.A. Woodbury, Application of genetic algorithms and neural networks to the solution of inverse heat conduction problems: a tutorial, inverse problems in engineering: theory and practice, in Proceedings of the 4th International Conference on Inverse Problems in Engineering (Angra dos Reis, Brazil, 2002)

  33. L. Boillereoux, C. Cadet, A. Le Bail, J. Food Eng. 57, 17 (2003)

    Article  Google Scholar 

  34. M.T. Sun, C.H. Chang, B.F. Lin, Appl. Therm. Eng. 29, 1818 (2009)

    Article  Google Scholar 

  35. S. Chudzik, Meas. Sci. Technol. 22/7, 1 (2011)

    Google Scholar 

  36. C. Balaji, T. Padhi, Int. J. Heat Mass Transf. 53, 5440 (2010)

    Article  MATH  Google Scholar 

  37. S. Ghosh, D.K. Pratihar, B. Miati, P.K. Das, Inverse Prob. Sci. Eng. 19, 337 (2011)

    Google Scholar 

  38. M. Raudensky, J. Horsky, J. Krejsa, Int. Commun. Heat Mass Transf. 22, 661 (1995)

    Article  Google Scholar 

  39. J. Krejsa, K.A. Woodbury, J.D. Ratliff, M. Raudensky, Inverse Prob. Eng. 7, 197 (1999)

    Google Scholar 

  40. E.H. Shiguemori, F.P. Harter, H.F. Campos Velho, J.D.S. da Silva, Tendencias em Mathematica Aplicada e Computacional 3, 189 (2002)

    MATH  Google Scholar 

  41. E.H. Shiguemori, J.D.S. da Silva, H.F.D. Velho, Inverse Prob. Sci. Eng. 12, 317 (2004)

    Google Scholar 

  42. L. Kiss, Determination of Thermal Properties. C.Sc. Thesis, Hungarian Academy of Sciences, Budapest, 1983 [in Hungarian]

  43. B. Czél, Gy. Gróf, ICHMT Digit. Libr. (2008). doi:10.1615/ICHMT.2008.CHT.1700

  44. B. Czél, Determination of the Thermal Conductivity and the Volumetric Heat Capacity by Genetic Algorithm. Ph.D. Thesis, Budapest University of Technology and Economics, Budapest, 2011 [in Hungarian] (http://www.doktori.hu/index.php?menuid=193&vid=7640)

Download references

Acknowledgments

The work was supported by the Hungarian Scholarship Board. This work was connected to the scientific program of the “Development of quality-oriented and harmonized R+D+I strategy and functional model at BME” project. This project was supported by the New Széchenyi Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). The work was supported by the Grant OTKA 82024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balázs Czél.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czél, B., Woodbury, K.A. & Gróf, G. Inverse Identification of Temperature-Dependent Volumetric Heat Capacity by Neural Networks. Int J Thermophys 34, 284–305 (2013). https://doi.org/10.1007/s10765-013-1410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1410-6

Keywords

Navigation