International Journal of Thermophysics

, Volume 34, Issue 2, pp 267–283 | Cite as

Measurements of Microstructural, Mechanical, Electrical, and Thermal Properties of an Al–Ni Alloy

  • A. Aker
  • H. Kaya


The Al–7.5 wt% Ni alloy was directionally solidified upwards with different temperature gradients, \(G\) (\(0.86\,\text{ K}~{\cdot }~ \text{ mm}^{-1}\) to \(4.24\,\text{ K}~{\cdot }~\text{ mm}^{-1})\) at a constant growth rate, \(V\) (\(8.34\,\upmu \text{ m}~{\cdot }~\text{ s}^{-1})\). The dependence of dendritic microstructures such as the primary dendrite arm spacing (\(\lambda _{1}\)), the secondary dendrite arm spacing (\(\lambda _{2}\)), the dendrite tip radius (\(R\)), and the mushy zone depth (\(d\)) on the temperature gradient were analyzed. The dendritic microstructures in this study were also compared with current theoretical models, and similar previous experimental results. Measurements of the microhardness (HV) and electrical resistivity (\(\rho \)) of the directionally solidified samples were carried out. Variations of the electrical resistivity (\(\rho \)) with temperature (\(T\)) were also measured by using a standard dc four-point probe technique. And also, the dependence of the microhardness and electrical resistivity on the temperature gradient was analyzed. According to these results, it has been found that the values of HV and \(\rho \) increase with increasing values of \(G\). But, the values of HV and \(\rho \) decrease with increasing values of dendritic microstructures (\(\lambda _{1}, \lambda _{2}, R,\) and \(d\)). It has been also found that, on increasing the values of temperature, the values of \(\rho \) increase. The enthalpy of fusion (\(\Delta {H}\)) for the Al–7.5 wt%Ni alloy was determined by a differential scanning calorimeter from a heating trace during the transformation from solid to liquid.


Al–Ni alloy Dendritic microstructures Electrical resistivity Microhardness 


  1. 1.
    E.J. Lavernia, N.J. Grant, J. Mater. Sci. 22, 1521 (1987)ADSCrossRefGoogle Scholar
  2. 2.
    F. Yang, L. Peng, K. Okazaki, Metall. Mater. Trans. A 35, 3323 (2004)CrossRefGoogle Scholar
  3. 3.
    R.W. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Mater. Des. 31, 4485 (2010)CrossRefGoogle Scholar
  4. 4.
    H. Kaya, E. Çadırlı, M. Gündüz, JMEPEG 16, 12 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    M. Gündüz, E. Çadırlı, Mater. Sci. Eng. A 327, 167 (2002)CrossRefGoogle Scholar
  6. 6.
    H. Kaya, E. Çadırlı, U. Böyük, N. Maraşlı, J. Non Cryst. Solids 355, 1231 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    J. Lapin, A. Klimova, R. Velisek, M. Kursa, Scripta Mater. 37, 85 (1997)CrossRefGoogle Scholar
  8. 8.
    J.D. Hunt, Solidification and Casting of Metals (The Metal Society, London, 1979), pp. 3–9Google Scholar
  9. 9.
    R. Trivedi, Metall. Trans. A 15, 977 (1984)CrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Kurz, D.J. Fisher, Acta Metall. 29, 11 (1981)CrossRefGoogle Scholar
  11. 11.
    T. Okamoto, K. Kishitake, J. Cryst. Growth 29, 137 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    D. Bouchard, J.S. Kirkaldy, Metall. Mater. Trans. B 27, 101 (1996)CrossRefGoogle Scholar
  13. 13.
    D. Bouchard, J.S. Kirkaldy, Metall. Mater. Trans. B 28, 651 (1997)CrossRefGoogle Scholar
  14. 14.
    J.W. Rutter, B.A. Chalmers, Can. J. Phys. 31, 15 (1953)ADSCrossRefGoogle Scholar
  15. 15.
    M.S. Bhat, D.R. Poirier, J.C. Heinrich, Metall. Trans. B 26, 1049 (1995)CrossRefGoogle Scholar
  16. 16.
    F.M. Smits, AT &T Tech. J. 37, 711 (1958)Google Scholar
  17. 17.
    P.E. Gise, R. Blanchard, Semiconductor and Integrated Circuit Fabrication Techniques (Reston Pub. Co., Reston, VA, 1979)Google Scholar
  18. 18.
    H. Kaya, E. Çadırlı, U. Böyük, N. Maraşlı, Appl. Surf. Sci. 255, 3071 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    H. Kaya, M. Gündüz, E. Çadırlı, N. Maraşlı, J. Alloy. Compd. 478, 281 (2009)CrossRefGoogle Scholar
  20. 20.
    H. Kaya, U. Böyük, E. Çadırlı, N. Maraşlı, Mater. Des. 34, 707 (2012)CrossRefGoogle Scholar
  21. 21.
    E. Kaya, M. Gündüz Çadlrll, A. Ülgen, JMEPEG 12, 544 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Khan, A. Ourdjini, Q.S. Hamed, M.A.A. Najafabadi, R. Elliott, J. Mater. Sci. 28, 5957 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    A.I. Telli, S.E. Kısakürek, Mater. Sci. Technol. 4, 153 (1988)CrossRefGoogle Scholar
  24. 24.
    J. Lapin, L. Ondrus, M. Nazmy, Intermetallics 10, 1019 (2002)CrossRefGoogle Scholar
  25. 25.
    J. Fan, X. Li, Y. Su, Ji Guo, H. Fu, J. Alloy. Compd. 504, 60 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Fan, X. Li, Y. Su, Ji Guo, H. Fu, J. Alloy. Compd. 506, 593 (2010)CrossRefGoogle Scholar
  27. 27.
    M. Şahin, H. Kaya, Int. J. Miner. Metall. Mater. 18, 582 (2011)CrossRefGoogle Scholar
  28. 28.
    A. Sergeev, V. Mitin, Phys. Rev. B 61, 6041 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    Z. Boekelheide, D.W. Cooke, E. Helgren, F. Hellman, Phys. Rev. B 80, 134426 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    V. Rudnev, D. Loveless, R. Cook, M. Black, Handbook of Induction Heating (Marcel Dekker, Inc., New York, 2003)Google Scholar
  31. 31.
    R. Brandt, G. Neuer, Int. J. Thermophys. 28, 1429 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    R. Hultgren, R.L. Orr, P.D. Anderson, K.K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys (John Wiley & Sons, Inc., New York, 1963)Google Scholar
  33. 33.
    T.T. Massalski, Binary Alloy Phase Diagrams (American Society for Metals, Metals Park, OH, 1986)Google Scholar
  34. 34.
    O. Hunziker, W. Kurz, Metall. Mater. Trans. A 30, 3167 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsInstitute of Science and Technology, Erciyes UniversityKayseriTurkey
  2. 2.Department of Science EducationFaculty of Education, Erciyes UniversityKayseriTurkey

Personalised recommendations