Advertisement

International Journal of Thermophysics

, Volume 34, Issue 1, pp 170–188 | Cite as

A Thermo-mechanical Shock Problem for Generalized Theory of Thermoviscoelasticity

  • M. A. Elhagary
Article

Abstract

A one-dimensional problem for a viscoelastic half space is considered in the context of the generalized theory of thermoviscoelasticity with one relaxation time. The bounding plane is acted upon by a combination of thermal and mechanical shock acting for short times. The Laplace transform technique is used to solve the problem. The solution in the transformed domain is obtained by a direct approach. The inverse transforms are obtained in an approximate analytical manner using asymptotic expansions valid for small values of time. The temperature, displacement, and stress are computed and represented graphically.

Keywords

Generalized thermoelasticity Generalized thermoviscoelasticity  Half space Laplace transform 

References

  1. 1.
    B. Gross, Mathematical Structures of the Theories of Viscoelasticity (Hermann, Paris, 1953)Google Scholar
  2. 2.
    E.M. Gurtin, E. Sternberg, Arch. Ration. Mech. Anal. 11, 182 (1962)MathSciNetCrossRefGoogle Scholar
  3. 3.
    M.M. Stratonova, Mech. Compos. Mater. 7, 646 (1971)Google Scholar
  4. 4.
    E.B. Pobedrya, Mech. Compos. Mater. 15, 271 (1979)CrossRefGoogle Scholar
  5. 5.
    A. A. Il’yushin, E. B. Pobedrya (Nauka, Moscow, 1970) [in Russian]Google Scholar
  6. 6.
    E.B. Pobedrya, Mech. Compos. Mater. 5, 353 (1969)Google Scholar
  7. 7.
    E.B. Pobedrya, Int. Appl. Mech. 41, 1031 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    G. Medri, Meccanica 23, 226 (1988)CrossRefGoogle Scholar
  9. 9.
    M. Hajar, H.R. Blanc, Acta Mechanica 130, 175 (1998)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    M. Hajar, H.R. Blanc, Acta Mechanica 130, 185 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    S.A. Lychev, Mech. Solids 43, 769 (2008)CrossRefGoogle Scholar
  12. 12.
    H. Sherief, M. Allam, M. Elhagary, Int. J. Thermophys 32, 1271 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)ADSCrossRefMATHGoogle Scholar
  14. 14.
    R. Dhaliwal, H. Sherief, Quart. Appl. Math. 33, 1 (1980)MathSciNetCrossRefGoogle Scholar
  15. 15.
    H. Sherief, J. Therm. Stresses 9, 151 (1986)CrossRefGoogle Scholar
  16. 16.
    H. Sherief, Int. J. Eng. Sci. 32, 313 (1994)CrossRefMATHGoogle Scholar
  17. 17.
    H. Sherief, M. Anwar, J. Therm. Stresses 9, 165 (1986)CrossRefGoogle Scholar
  18. 18.
    H. Sherief, A. Elmisiery, M. Elhagary, J. Therm. Stresses 27, 885–902 (2004)CrossRefGoogle Scholar
  19. 19.
    R. Churchill, Operational Mathematics, 3rd edn. (McGraw-Hill, New York, 1972)MATHGoogle Scholar
  20. 20.
    F. Oberhettinger, L. Badii, Tables of Laplace Transforms (Springer, New York, 1973)CrossRefMATHGoogle Scholar
  21. 21.
    N.G. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press, London, New York, 1996)Google Scholar
  22. 22.
    H. Sherief, R. Dhaliwal, J. Therm. Stresses 4, 407 (1981)CrossRefGoogle Scholar
  23. 23.
    R. Hetnarski, Arch. Mech. Stosow 13, 295 (1961)MathSciNetMATHGoogle Scholar
  24. 24.
    R. Hetnarski, Bull. Acad. Pol. Sci. Ser. Sci. Tech. 12, 49 (1964)MATHGoogle Scholar
  25. 25.
    B. Boley, Quart. Appl. Math. 19, 273 (1962)MathSciNetMATHGoogle Scholar
  26. 26.
    G. Honig, U. Hirdes, J. Camp, Appl. Math. 10, 113 (1984)MATHGoogle Scholar
  27. 27.
    H. Sherief, M. Anwar, J. Therm. Stresses 17, 213 (1994)CrossRefGoogle Scholar
  28. 28.
    M. Anwar, H. Sherief, Appl. Math. Model. 12, 161 (1988)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    M. Anwar, H. Sherief, J. Therm. Stresses 17, 257 (1994)MathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Hosseini-Tehrani, M.R. Eslami, Eng. Anal. Bound. Elem. 24, 249 (2000)CrossRefMATHGoogle Scholar
  31. 31.
    S. Bargmann, P. Steinmann, A Continuous Galerkin Finite Element Method for Thermoelasticity Without Energy Dissipation (III European Conference on Computational Mechanics, Lisbon, 2006)Google Scholar
  32. 32.
    I. Abbas, Forsch Ingenieurwesen 71, 215 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of ScienceDamiatta UniversityNew DamiattaEgypt

Personalised recommendations