Skip to main content
Log in

A Thermo-mechanical Shock Problem for Generalized Theory of Thermoviscoelasticity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A one-dimensional problem for a viscoelastic half space is considered in the context of the generalized theory of thermoviscoelasticity with one relaxation time. The bounding plane is acted upon by a combination of thermal and mechanical shock acting for short times. The Laplace transform technique is used to solve the problem. The solution in the transformed domain is obtained by a direct approach. The inverse transforms are obtained in an approximate analytical manner using asymptotic expansions valid for small values of time. The temperature, displacement, and stress are computed and represented graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Gross, Mathematical Structures of the Theories of Viscoelasticity (Hermann, Paris, 1953)

    Google Scholar 

  2. E.M. Gurtin, E. Sternberg, Arch. Ration. Mech. Anal. 11, 182 (1962)

    Article  MathSciNet  Google Scholar 

  3. M.M. Stratonova, Mech. Compos. Mater. 7, 646 (1971)

    Google Scholar 

  4. E.B. Pobedrya, Mech. Compos. Mater. 15, 271 (1979)

    Article  Google Scholar 

  5. A. A. Il’yushin, E. B. Pobedrya (Nauka, Moscow, 1970) [in Russian]

  6. E.B. Pobedrya, Mech. Compos. Mater. 5, 353 (1969)

    Google Scholar 

  7. E.B. Pobedrya, Int. Appl. Mech. 41, 1031 (2005)

    Article  ADS  Google Scholar 

  8. G. Medri, Meccanica 23, 226 (1988)

    Article  Google Scholar 

  9. M. Hajar, H.R. Blanc, Acta Mechanica 130, 175 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Hajar, H.R. Blanc, Acta Mechanica 130, 185 (1998)

    Article  MathSciNet  Google Scholar 

  11. S.A. Lychev, Mech. Solids 43, 769 (2008)

    Article  Google Scholar 

  12. H. Sherief, M. Allam, M. Elhagary, Int. J. Thermophys 32, 1271 (2011)

    Article  ADS  Google Scholar 

  13. H. Lord, Y. Shulman, J. Mech. Phys. Solids 15, 299 (1967)

    Article  ADS  MATH  Google Scholar 

  14. R. Dhaliwal, H. Sherief, Quart. Appl. Math. 33, 1 (1980)

    Article  MathSciNet  Google Scholar 

  15. H. Sherief, J. Therm. Stresses 9, 151 (1986)

    Article  Google Scholar 

  16. H. Sherief, Int. J. Eng. Sci. 32, 313 (1994)

    Article  MATH  Google Scholar 

  17. H. Sherief, M. Anwar, J. Therm. Stresses 9, 165 (1986)

    Article  Google Scholar 

  18. H. Sherief, A. Elmisiery, M. Elhagary, J. Therm. Stresses 27, 885–902 (2004)

    Article  Google Scholar 

  19. R. Churchill, Operational Mathematics, 3rd edn. (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  20. F. Oberhettinger, L. Badii, Tables of Laplace Transforms (Springer, New York, 1973)

    Book  MATH  Google Scholar 

  21. N.G. Watson, A Treatise on the Theory of Bessel Functions, 2nd edn. (Cambridge University Press, London, New York, 1996)

    Google Scholar 

  22. H. Sherief, R. Dhaliwal, J. Therm. Stresses 4, 407 (1981)

    Article  Google Scholar 

  23. R. Hetnarski, Arch. Mech. Stosow 13, 295 (1961)

    MathSciNet  MATH  Google Scholar 

  24. R. Hetnarski, Bull. Acad. Pol. Sci. Ser. Sci. Tech. 12, 49 (1964)

    MATH  Google Scholar 

  25. B. Boley, Quart. Appl. Math. 19, 273 (1962)

    MathSciNet  MATH  Google Scholar 

  26. G. Honig, U. Hirdes, J. Camp, Appl. Math. 10, 113 (1984)

    MATH  Google Scholar 

  27. H. Sherief, M. Anwar, J. Therm. Stresses 17, 213 (1994)

    Article  Google Scholar 

  28. M. Anwar, H. Sherief, Appl. Math. Model. 12, 161 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Anwar, H. Sherief, J. Therm. Stresses 17, 257 (1994)

    Article  MathSciNet  Google Scholar 

  30. P. Hosseini-Tehrani, M.R. Eslami, Eng. Anal. Bound. Elem. 24, 249 (2000)

    Article  MATH  Google Scholar 

  31. S. Bargmann, P. Steinmann, A Continuous Galerkin Finite Element Method for Thermoelasticity Without Energy Dissipation (III European Conference on Computational Mechanics, Lisbon, 2006)

  32. I. Abbas, Forsch Ingenieurwesen 71, 215 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Elhagary.

Appendix

Appendix

 

$$\begin{aligned} v_0&= \sqrt{g_0^2 -4\tau _0 \left( {1-B_1 } \right)} \\ v_1&= 2g_0 g_1 -4\left( {1-B_1 -\tau _0 \beta B} \right)_1 \\ v_2&= g_1^2 +2g_0 g_2 +4B_1 \beta \left( {1+\beta \tau _0 } \right)\\ v_3&= 2\left( {g_0 g_3 +g_1 g_2 } \right)+4B_1 \beta ^{2}\left({1+\beta \tau _0 } \right) \\ v_4&= g_2^2 +2\left( {g_0 g_4 +g_1 g_3 } \right)+4B_1 \beta ^{3}\left( {1+\beta \tau _0 } \right) \\ g_0&= 1+\tau _0 \left( {1-B_1 -\varepsilon \left( {B_2 -B_3 } \right)^{2}} \right) \\ g_1&= 1-B_1 -\varepsilon \left( {B_2 -B_3 } \right)^{2}+\tau _0 \varepsilon B_1 2 \\ g_2&= -\left( {B_1 \beta +\tau _0 \varepsilon B_3^2 \beta ^{2}+\tau _0 B_1 \beta ^{2}} \right) \\ g_3&= -\left( {B_1 \beta ^{2}+2\tau _0 \varepsilon B_3^2 \beta ^{3}+\tau _0 B_1 \beta ^{3}+\varepsilon B_3^2 \beta ^{2}} \right) \\ g_4&= -\left( {B_1 \beta ^{3}+3\tau _0 \varepsilon B_3^2 \beta ^{4}+\tau _0 B_1 \beta ^{4}+2\varepsilon B_3^2 \beta ^{3}} \right)\\ B_1&= \alpha _1 A_1 +2\alpha _2 A_2 \\ B_2&= 3\alpha _1 +2\alpha _2 \\ B_3&= 3\alpha _1 A_1 +2\alpha _2 A_2 \\ B_4&= B_2 -B_3\\ n_{10}&= g_0 +v_0 \\ n_{11}&= \frac{2g_1 v_0 +v_1 }{2v_0 } \\ n_{12}&= \frac{8g_2 v_0^3 +4v_2 v_0^2 -v_1^2 }{8v_0^3 } \\ n_{13}&= \frac{16g_3 v_0^5 -4v_2 v_1 v_0^2 +v_1^3 +8v_3 v_0^4 }{16v_0^5 } \\ n_{14}&= \frac{128g_3 v_0^7 +64v_4 v_0^6 -32v_3 v_1 v_0^4 -16v_0^4 v_2^2 +24v_1^2 v_2 v_0^2 -5v_1^4 }{128v_0^7 } \\ n_{20}&= g_0 -v_0 \\ n_{21}&= \frac{2g_1 v_0 -v_1 }{2v_0 } \\ n_{22}&= \frac{8g_2 v_0^3 -4v_2 v_0^2 +v_1^2 }{8v_0^3 } \\ n_{13}&= \frac{16g_3 v_0^5 +4v_2 v_1 v_0^2 -v_1^3 -8v_3 v_0^4 }{16v_0^5 } \\ n_{14}&= \frac{128g_3 v_0^7 -64v_4 v_0^6 +32v_3 v_1 v_0^4 +16v_0^4 v_2^2 -24v_1^2 v_2 v_0^2 +5v_1^4 }{128v_0^7 } \end{aligned}$$
$$\begin{aligned} a_{i0}&= \frac{n_{i0} }{2\left( {1-B_1 } \right)} \\ a_{ij}&= \frac{1}{2}\left[ {\frac{n_{ij} }{\left( {1-B_1 } \right)}+B_1 \sum _{k=j}^1 {\frac{\beta ^{k}n_{ij-k} }{\left( {1-B_1 } \right)^{k+1}}} } \right], \quad i=1,2, \quad j=1,2,3,4 \\ b_{i0}&= \sqrt{a_{i0} },\quad b_{i1} =\frac{a_{i1} }{2b_{i0} },\quad b_{i2} =\frac{4a_{i0} a_{i2} -a_{i1}^2 }{8b_{i0}^3 } \quad i=1,2 \\ b_{i3}&= \frac{8a_{i3} a_{i0}^2 -4a_{i1} a_{i2} a_{i0} +a_{i1}^3 }{16b_{i0}^5 }, \\ b_{i4}&= \frac{64a_{i4} a_{i0}^3 -32a_{i1} a_{i3} a_{i0}^2 -16a_{i2}^2 a_{i0}^2 +24a_{i1}^2 a_{i2} a_{i0} -5a_{i1}^4 }{128b_{i0}^7 } \\ a_0&= \left( {1-B_1 } \right)\left( {a_{10} -a_{20} } \right) \\ a_1&= \left( {1-B_1 } \right)\left( {a_{11} -a_{21} } \right)-B_1 \beta \left( {a_{10} -a_{20} } \right) \\ a_2&= \left( {1-B_1 } \right)\left( {a_{12} -a_{22} } \right)-B_1 \beta \left( {a_{11} -a_{21} } \right)-B_1 \beta ^{2}\left( {a_{10} -a_{20} } \right) \\ a_3&= ( {1-B_1 } )( {a_{13} -a_{23} } )-B_1 \beta ( {a_{12} -a_{22} } )-B_1 \beta ^{2}( {a_{11} -a_{21} } )-B_1 \beta ^{3}( {a_{10} -a_{20} } ) \\ a_4&= \left( {1-B_1 } \right)\left( {a_{14} -a_{24} } \right)-B_1 \beta \left( {a_{13} -a_{23} } \right)-B_1 \beta ^{2}\left( {a_{12} -a_{22} } \right)\\&-B_1 \beta ^{3}\left( {a_{11} -a_{21} } \right)-B_1 \beta ^{4}\left( {a_{10} -a_{20} } \right) \\ b_0&= \frac{1}{a_0 } \\ b_1&= \frac{-a_1 }{a_0^2 } \\ b_2&= \frac{a_1^2 -a_0 a_2 }{a_0^3 } \\ b_3&= \frac{2a_1 a_2 a_0 -a_3 a_0^2 -a_1^3 }{a_0^4 } \\ b_4&= \frac{2a_1 a_3 a_0^2 -a_4 a_0^3 +a_2^2 a_0^2 -3a_0 a_2 a_1^2 +a_1^4 }{a_0^5 } \\ c_0&= \frac{b_0 }{B_4 } \\ c_1&= \frac{b_1 B_4 +b_0 \beta B_3 }{B_4^2 } \\ c_2&= \frac{b_2 B_4^2 +b_1 \beta B_3 B_4 +b_0 \beta ^{2}B_3 B_2 }{B_4^3 } \\ c_3&= \frac{b_3 B_4^3 +b_2 \beta B_3 B_4^2 +b_1 \beta ^{2}B_3 B_2 B_4 +b_0 \beta ^{3}B_3 B_2^2 }{B_4^4 } \\ c_4&= \frac{b_4 B_4^4 +b_3 \beta B_3 B_4^3 +b_2 \beta ^{2}B_3 B_2 B_4^2 +b_1 \beta ^{3}B_3 B_2^2 B_4 +b_0 \beta ^{4}B_3 B_2^3 }{B_4^5 } \\ d_{i0}&= \left( {1-B_1 } \right)a_{i0} -1 \\ d_{i1}&= \left( {1-B_1 } \right)a_{i1} -B_1 \beta a_{i0} \end{aligned}$$
$$\begin{aligned} d_{i2}&= \left( {1-B_1 } \right)a_{i2} -B_1 \beta a_{i1} -B_1 \beta ^{2}a_{i0} \quad \quad , i = 1,2 \\ d_{i3}&= \left( {1-B_1 } \right)a_{i3} -B_1 \beta a_{i2} -B_1 \beta ^{2}a_{i1} -B_1 \beta ^{3}a_{i0} \\ d_{i4}&= \left( {1-B_1 } \right)a_{i4} -B_1 \beta a_{i3} -B_1 \beta ^{2}a_{i2} -B_1 \beta ^{3}a_{i1} -B_1 \beta ^{4}a_{i0} \\ d_0&= d_{10} d_{20} \\ d_1&= d_{10} d_{21} +d_{11} d_{20} \\ d_2&= d_{10} d_{22} +d_{11} d_{21} +d_{12} d_{20} \\ d_3&= d_{10} d_{23} +d_{11} d_{22} +d_{12} d_{21} +d_{13} d_{20} \\ d_4&= d_{10} d_{24} +d_{11} d_{23} +d_{12} d_{22} +d_{13} d_{21} +d_{14} d_{20} \\ \theta _{i0}&= b_0 d_{i0} \\ \theta _{i1}&= b_0 d_{i1} +b_1 d_{i0} \\ \theta _{i2}&= b_0 d_{i2} +b_1 d_{i1} +b_2 d_{i0}, \quad i = 1,2 \\ \theta _{i3}&= b_0 d_{i3} +b_1 d_{i2} +b_2 d_{i1} +b_3 d_{i0} \\ \theta _{i4}&= b_0 d_{i4} +b_1 d_{i3} +b_2 d_{i2} +b_3 d_{i1} +b_4 d_{i0} \\ \theta _{m0}&= d_0 c_0 \\ \theta _{m1}&= d_0 c_1 +d_1 c_0 \\ \theta _{m2}&= d_0 c_2 +d_1 c_1 +d_2 c_0 \\ \theta _{m3}&= d_0 c_3 +d_1 c_2 +d_2 c_1 +d_3 c_0 \\ \theta _{m4}&= d_0 c_4 +d_1 c_3 +d_2 c_2 +d_3 c_1 +d_4 c_0 \\ \sigma _0&= B_4 b_0 \\ \sigma _1&= B_4 b_1 -B_3 \beta b_0 \\ \sigma _2&= B_4 b_2 -B_3 \beta \left( {b_1 +\beta b_0 } \right) \\ \sigma _3&= B_4 b_3 -B_3 \beta \left( {b_2 +\beta b_1 +\beta ^{2}b_0 } \right) \\ \sigma _4&= B_4 b_4 -B_3 \beta \left( {b_3 +\beta b_2 +\beta ^{2}b_1 +\beta ^{3}b_0 } \right) \\ u_{i0}&= \sigma _0 b_{i0} \\ u_{i1}&= \sigma _0 b_{i1} +\sigma _1 b_{i0} \\ u_{i2}&= \sigma _0 b_{i2} +\sigma _1 b_{i1} +\sigma _2 b_{i0} \\ u_{i3}&= \sigma _0 b_{i3} +\sigma _1 b_{i2} +\sigma _2 b_{i1} +\sigma _3 b_{i0} \\ u_{i2}&= \sigma _0 b_{i4} +\sigma _1 b_{i3} +\sigma _2 b_{i2} +\sigma _3 b_{i1} +\sigma _4 b_{i0} \\ v_{10}&= b_{10} \theta _{20} \\ v_{11}&= b_{10} \theta _{21} +b_{11} \theta _{20} \\ v_{12}&= b_{10} \theta _{22} +b_{11} \theta _{21} +b_{12} \theta _{20} \\ v_{13}&= b_{10} \theta _{23} +b_{11} \theta _{22} +b_{12} \theta _{21} +b_{13} \theta _{20} \\ v_{14}&= b_{10} \theta _{24} +b_{11} \theta _{23} +b_{12} \theta _{22} +b_{13} \theta _{21} +b_{14} \theta _{20} \\ v_{20}&= b_{20} \theta _{10} \\ v_{21}&= b_{20} \theta _{11} +b_{21} \theta _{10} \\ v_{22}&= b_{20} \theta _{12} +b_{21} \theta _{11} +b_{22} \theta _{10} \\ v_{23}&= b_{20} \theta _{13} +b_{21} \theta _{12} +b_{22} \theta _{11} +b_{23} \theta _{10} \\ v_{24}&= b_{20} \theta _{14} +b_{21} \theta _{13} +b_{22} \theta _{12} +b_{23} \theta _{11} +b_{24} \theta _{10} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elhagary, M.A. A Thermo-mechanical Shock Problem for Generalized Theory of Thermoviscoelasticity. Int J Thermophys 34, 170–188 (2013). https://doi.org/10.1007/s10765-013-1395-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1395-1

Keywords

Navigation