International Journal of Thermophysics

, Volume 34, Issue 8–9, pp 1817–1827 | Cite as

Effect of the Electron–Phonon Coupling on the Effective Thermal Conductivity of Metallic Bilayers

  • J. Ordonez-Miranda
  • J. J. Alvarado-Gil
  • Ronggui Yang


Systems consisting of metallic layers are commonly used in many applications for microelectronics, data storage, protection coatings, and microelectro-mechanical systems. The physical properties of such systems are strongly determined by the flow of the electron and phonon gases and their interactions. In this study, the effective thermal conductivity of a metal–metal bilayer system is studied using the two-temperature model of heat conduction. By defining the total interfacial thermal resistance, it is shown that the thermal conductivity of the bilayer system depends on the ratio between the thicknesses of the metallic layers and their intrinsic coupling length and it has a simple interpretation as the sum of thermal resistances in series. It is demonstrated that the total interfacial thermal resistance can be minimized by choosing appropriately the thermal and geometrical properties of the component layers. The proposed approach could be useful for thermally characterizing and guiding the design of novel metal–metal-layered systems involved in diverse technological applications.


Effective thermal conductivity Electron–phonon coupling Interfacial thermal resistance Metallic layers 


  1. 1.
    G.D. Mahan, J.O. Sofo, M. Bartkowiak, J. Appl. Phys. 83, 4683 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    G.D. Mahan, L.M. Woods, Phys. Rev. Lett. 80, 4016 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    B. Stärk, P. Krüger, J. Pollmann, Phys. Rev. B: Condens. Matter 81, 035321 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    V. Rawat, Y.K. Koh, D.G. Cahill, T.D. Sands, J. Appl. Phys. 105, 024909 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    V. Rawat, T. Sands, J. Appl. Phys. 100, 064901 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    S. Murad, I.K. Puri, Appl. Phys. Lett. 92, 133105 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Zebarjadi, Z.X. Bian, R. Singh, A. Shakouri, R. Wortman, V. Rawat, T. Sands, J. Electron. Mater. 38, 960 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, London, 1959)Google Scholar
  9. 9.
    P.E. Hopkins, J.L. Kassebaum, P.M. Norris, J. Appl. Phys. 105, 023710 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A. Majumdar, P. Reddy, Appl. Phys. Lett. 84, 4768 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    K.H. Yoo, A.C. Anderson, Low Temp. Phys. 63, 269 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    J. Ordonez-Miranda, R.G. Yang, J.J. Alvarado-Gil, J. Appl. Phys. 109, 094310 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    T.Q. Qiu, C.L. Tien, J. Heat Transf.: Trans. ASME 115, 835 (1993)CrossRefGoogle Scholar
  14. 14.
    E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)ADSCrossRefGoogle Scholar
  15. 15.
    S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)ADSGoogle Scholar
  16. 16.
    M.I. Kaganov, I.M. Lifshitz, M.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)MATHGoogle Scholar
  17. 17.
    D.Y. Tzou, Macro- to Microscale Heat Transfer: the Lagging Behavior (Taylor & Francis, Washington, DC, 1997)Google Scholar
  18. 18.
    P.L. Kapitza, J. Phys. (USSR) 4, 181 (1941)Google Scholar
  19. 19.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984)ADSCrossRefGoogle Scholar
  21. 21.
    P.M. Norris, A.P. Caffrey, R.J. Stevens, J.M. Klopf, J.T. McLeskey, A.N. Smith, Rev. Sci. Instrum. 74, 400 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    P. Chantrenne, M. Raynaud, D. Baillis, J.L. Barrat, Microscale Thermophys. Eng. 7, 117 (2003)CrossRefGoogle Scholar
  23. 23.
    M. Kanskar, M.N. Wybourne, Phys. Rev. B 50, 168 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    N. Stojanovic, D.H.S. Maithripala, J.M. Berg, M. Holtz, Phys. Rev. B 82, 075418 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    J.L. Lucio, J.J. Alvarado-Gil, O. Zelaya-Angel, H. Vargas, Phys Status Solidi A: Appl. Res. 150, 695 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • J. Ordonez-Miranda
    • 1
    • 2
  • J. J. Alvarado-Gil
    • 2
  • Ronggui Yang
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of ColoradoBoulderUSA
  2. 2.Centro de Investigación y de Estudios Avanzados del I.P.N-Unidad Mérida, Departamento de Física AplicadaCarretera Antigua a Progreso km. 6MéridaMéxico

Personalised recommendations