International Journal of Thermophysics

, Volume 34, Issue 8–9, pp 1810–1816 | Cite as

Elastic Properties of Compacted Clay Soils by Laser Ultrasonics

  • M. Navarrete
  • F. A. Godínez
  • M. Villagrán-Muniz


To evaluate the effect of the excitation frequency on the dynamic properties of soils, the elastic modulus \(E\), shear modulus \(G\), and Poisson’s ratio \(\nu \) for three Mexican compacted clayey soils were determined using two techniques: laser ultrasonic and resonant column (RC) tests. For the first, the parameters were determined by measurements of the P- and S-waves at ultrasonic frequencies and variations of the height of the cylindrical soil specimens and for the second one, a harmonic excitation between 5 Hz and 7 Hz was applied. Large variations in the elastic parameters through an ultrasonic axial scanning of the soil specimens were observed; this reveals the heterogeneity of these materials, while a decrease of the sample aspect ratio mainly affects the determination of Poisson’s ratio. The ultrasonic data were integrated with those from RC data to obtain a shear modulus profile covering both high and low frequencies. The interpolation on whether the data are either linear or not is an indication of the viscoelastic behavior of the compacted clayey soils. The specimens were: (a) clay from Texcoco Valley, (b) clay from Mexico Valley, and (c) granular soils from the Parota. Experimental determination of the mechanical properties of soils is very important because soil constitutive models are traditionally calibrated from global boundary measurements taken from laboratory soil specimens. The most difficult parameter to obtain is the Poisson’s ratio, as well as the shear modulus, which is a fundamental parameter for establishing the soil response under low amplitude vibrations and it is extremely important to foundation design.


Clay soils Elastic constants Laser ultrasonics Porous media Ultrasonic velocity 



This work was supported by the “Programa de apoyo a Proyectos de Investigación e Inovación Tecnológica” (PAPIIT) de la UNAM under Grant IN105212, Rompimiento de hidrocarbonos de alta viscosidad inducidos por cavitación hidrodinámica rotatoria.


  1. 1.
    K. Terzaghi, Theoretical Soil Mechanics (Wiley, New York, 1943)CrossRefGoogle Scholar
  2. 2.
    O. Reynolds, Philos. Mag. 20, 469 (1885)CrossRefGoogle Scholar
  3. 3.
    A.N. Schofield, C.P. Wroth, Critical State Soil Mechanics (McGraw-Hill, New York, 1968)Google Scholar
  4. 4.
    I.F. Collins, Int. J. Mech. Sci 47, 493 (2005)CrossRefMATHGoogle Scholar
  5. 5.
    R.F. Scott, Principles of Soil Mechanics (Addison Wesley, London, 1963)MATHGoogle Scholar
  6. 6.
    A. Drescher, G. DeJossel, J. Mech. Phys. Solids 20, 337 (1972)ADSCrossRefGoogle Scholar
  7. 7.
    I.F. Collins, G.T. Houlsby, Proc. R. Soc. Lond. A 453, 1975 (1997)ADSCrossRefMATHGoogle Scholar
  8. 8.
    Y. Zhou, Soils and Foundations, Reference Manual, vol. 1, chap. 5.0, Laboratory Tests, Publication No. FHWA NHI-06-088 (U.S. Department of Transportation, FHA, December 2006)Google Scholar
  9. 9.
    M. Navarrete, F. Rivera, R. Vera, M. Villagrán, J. Phys. IV 125, 749 (2005)Google Scholar
  10. 10.
    M. Navarrete, M. Villagrán, Rev. Sci. Instrum. 74, 479 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    M. Navarrete, F. Serranía, M. Villagrán, J. Bravo, R. Guinovart, R. Rodríguez, Mech. Adv. Mater. Struct. 9, 157 (2002)CrossRefGoogle Scholar
  12. 12.
    M. Navarrete, R. Vera, J. Pineda, J. Appl. Polym. Sci. 111, 1199 (2009)CrossRefGoogle Scholar
  13. 13.
    C.B. Scruby, L.E. Drain, Laser Ultrasonic: Techniques and Applications (Adam Hilger, New York, 1990)Google Scholar
  14. 14.
    G. Inci, N. Yesiller, T. Kagawa, ASTM Geotech. Test. J. 26, 125 (2003)Google Scholar
  15. 15.
    B.O. Hardin, W.L. Black, J. Soil Mech. Found. Div. ASCE 94(SM2), 353 (1968)Google Scholar
  16. 16.
    K. Nakagawa, K. Soja, J.K. Mitchell, J. Geotech. Eng. 122, 302 (1996)CrossRefGoogle Scholar
  17. 17.
    Z. Khan, M.H. El Naggar, G. Cascante, J. Franklin Inst. (in press)
  18. 18.
    A. Ossa, M.P. Romo, Geotext. Geomembr. 29, 40 (2011)CrossRefGoogle Scholar
  19. 19.
    R. Hofman, Frequency Dependent Elastic and Anelastic Properties of Clastic Rocks, Ph.D. Thesis, CSM Department of Geophysics, T61545, 2006Google Scholar
  20. 20.
    J.B. Adeyeri, R.J. Krizek, J.D. Achenbach, Trans. Soc. Rheol. 14, 375 (1970)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • M. Navarrete
    • 2
    • 1
  • F. A. Godínez
    • 1
  • M. Villagrán-Muniz
    • 3
  1. 1.Instituto de Ingeniería, edificio 12Col. Universidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.CCADETUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.CCADETUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations