Skip to main content
Log in

Elastic Properties of Compacted Clay Soils by Laser Ultrasonics

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

To evaluate the effect of the excitation frequency on the dynamic properties of soils, the elastic modulus \(E\), shear modulus \(G\), and Poisson’s ratio \(\nu \) for three Mexican compacted clayey soils were determined using two techniques: laser ultrasonic and resonant column (RC) tests. For the first, the parameters were determined by measurements of the P- and S-waves at ultrasonic frequencies and variations of the height of the cylindrical soil specimens and for the second one, a harmonic excitation between 5 Hz and 7 Hz was applied. Large variations in the elastic parameters through an ultrasonic axial scanning of the soil specimens were observed; this reveals the heterogeneity of these materials, while a decrease of the sample aspect ratio mainly affects the determination of Poisson’s ratio. The ultrasonic data were integrated with those from RC data to obtain a shear modulus profile covering both high and low frequencies. The interpolation on whether the data are either linear or not is an indication of the viscoelastic behavior of the compacted clayey soils. The specimens were: (a) clay from Texcoco Valley, (b) clay from Mexico Valley, and (c) granular soils from the Parota. Experimental determination of the mechanical properties of soils is very important because soil constitutive models are traditionally calibrated from global boundary measurements taken from laboratory soil specimens. The most difficult parameter to obtain is the Poisson’s ratio, as well as the shear modulus, which is a fundamental parameter for establishing the soil response under low amplitude vibrations and it is extremely important to foundation design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. K. Terzaghi, Theoretical Soil Mechanics (Wiley, New York, 1943)

    Book  Google Scholar 

  2. O. Reynolds, Philos. Mag. 20, 469 (1885)

    Article  Google Scholar 

  3. A.N. Schofield, C.P. Wroth, Critical State Soil Mechanics (McGraw-Hill, New York, 1968)

    Google Scholar 

  4. I.F. Collins, Int. J. Mech. Sci 47, 493 (2005)

    Article  MATH  Google Scholar 

  5. R.F. Scott, Principles of Soil Mechanics (Addison Wesley, London, 1963)

    MATH  Google Scholar 

  6. A. Drescher, G. DeJossel, J. Mech. Phys. Solids 20, 337 (1972)

    Article  ADS  Google Scholar 

  7. I.F. Collins, G.T. Houlsby, Proc. R. Soc. Lond. A 453, 1975 (1997)

    Article  ADS  MATH  Google Scholar 

  8. Y. Zhou, Soils and Foundations, Reference Manual, vol. 1, chap. 5.0, Laboratory Tests, Publication No. FHWA NHI-06-088 (U.S. Department of Transportation, FHA, December 2006)

  9. M. Navarrete, F. Rivera, R. Vera, M. Villagrán, J. Phys. IV 125, 749 (2005)

    Google Scholar 

  10. M. Navarrete, M. Villagrán, Rev. Sci. Instrum. 74, 479 (2003)

    Article  ADS  Google Scholar 

  11. M. Navarrete, F. Serranía, M. Villagrán, J. Bravo, R. Guinovart, R. Rodríguez, Mech. Adv. Mater. Struct. 9, 157 (2002)

    Article  Google Scholar 

  12. M. Navarrete, R. Vera, J. Pineda, J. Appl. Polym. Sci. 111, 1199 (2009)

    Article  Google Scholar 

  13. C.B. Scruby, L.E. Drain, Laser Ultrasonic: Techniques and Applications (Adam Hilger, New York, 1990)

    Google Scholar 

  14. G. Inci, N. Yesiller, T. Kagawa, ASTM Geotech. Test. J. 26, 125 (2003)

    Google Scholar 

  15. B.O. Hardin, W.L. Black, J. Soil Mech. Found. Div. ASCE 94(SM2), 353 (1968)

  16. K. Nakagawa, K. Soja, J.K. Mitchell, J. Geotech. Eng. 122, 302 (1996)

    Article  Google Scholar 

  17. Z. Khan, M.H. El Naggar, G. Cascante, J. Franklin Inst. www.sciencedirect.com (in press)

  18. A. Ossa, M.P. Romo, Geotext. Geomembr. 29, 40 (2011)

    Article  Google Scholar 

  19. R. Hofman, Frequency Dependent Elastic and Anelastic Properties of Clastic Rocks, Ph.D. Thesis, CSM Department of Geophysics, T61545, 2006

  20. J.B. Adeyeri, R.J. Krizek, J.D. Achenbach, Trans. Soc. Rheol. 14, 375 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Programa de apoyo a Proyectos de Investigación e Inovación Tecnológica” (PAPIIT) de la UNAM under Grant IN105212, Rompimiento de hidrocarbonos de alta viscosidad inducidos por cavitación hidrodinámica rotatoria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Navarrete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarrete, M., Godínez, F.A. & Villagrán-Muniz, M. Elastic Properties of Compacted Clay Soils by Laser Ultrasonics. Int J Thermophys 34, 1810–1816 (2013). https://doi.org/10.1007/s10765-013-1389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1389-z

Keywords

Navigation