Skip to main content
Log in

Specific Rate of Protein Crystallization Determined by the Guggenheim Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The biological function of a protein is intimately related to its three-dimensional molecular structure. Although X-ray diffraction from single crystals can be employed to solve for the molecular structure, use of this method is often impeded by the slow rate of precipitation of crystals from the pH buffered, aqueous solutions of strong electrolytes which ordinarily serve as growth media. The rate of crystallization can be measured as a function of growth solution conditions by growing the crystals in a dilatometer. As the crystallization progresses, the rate of change of the system volume caused by the difference in density between the crystals and the solution is reflected in the rate of change of the height of the fluid in the capillary side arm of the dilatometer. In the case of the proteins, lysozyme, and canavalin, this height changes exponentially with time, which serves to define a first-order rate constant or specific crystallization rate, k. A dozen such experiments may be needed to determine how \(k\) depends upon pH, electrolyte concentration, and temperature. Each experiment can require 4 or 5 days to reach equilibrium. If height measurements are made equally spaced in time, however, early time data can be combined according to the Guggenheim procedure, and the value of k can be determined without the experiment having to reach equilibrium. By using this method, the time required to complete an experiment can be reduced by as much as 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.H. Stout, L.H. Jensen, X-ray Structure Determination: A Practical Guide, 2nd edn. (Wiley, New York, 1989)

    Google Scholar 

  2. A.F. McPherson, Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory Press, New York, 1999)

    Google Scholar 

  3. J.K. Baird, Y.W. Kim, Mol. Phys. 100, 1855 (2002)

    Article  ADS  Google Scholar 

  4. Y.W. Kim, D.A. Barlow, K.G. Caraballo, J.K. Baird, Mol. Phys. 10, 2677 (2003)

    Article  ADS  Google Scholar 

  5. S.B. Howard, P.J. Twigg, J.K. Baird, E.J. Meehan, J. Cryst. Growth 90, 94 (1988)

    Article  ADS  Google Scholar 

  6. E.L. Forsythe, R.A. Judge, M.L. Pusey, J. Chem. Eng. Data 44, 637 (1999)

    Article  Google Scholar 

  7. R.C. DeMattei, R.S. Feigelson, J. Cryst. Growth 110, 34 (1991)

    Article  ADS  Google Scholar 

  8. E.L. Forsythe, M.L. Pusey, J. Cryst. Growth 139, 89 (1994)

    Article  ADS  Google Scholar 

  9. R.A. Judge, E.L. Forsythe, M.L. Pusey, Cryst. Growth Des. 10, 3164 (2010)

    Article  Google Scholar 

  10. J.K. Baird, J.C. Clunie, Phys. Chem. Liq. 37, 285 (1999)

    Article  Google Scholar 

  11. J.K. Baird, S.C. Hill, J.C. Clunie, J. Cryst. Growth 196, 220 (1999)

    Article  ADS  Google Scholar 

  12. K.G. Caraballo, J.K. Baird, J.D. Ng, Cryst. Growth Des. 6, 874 (2006)

    Article  Google Scholar 

  13. J.W. Moore, R.G. Pearson, Kinetics and Mechanism (Wiley, New York, 1981)

    Google Scholar 

  14. K.G. Caraballo, Kinetics of the Crystallization of Canavalin by the Measurement of the Supersaturation Decay, Materials Science M.S. thesis, University of Alabama in Huntsville, Huntsville, AL, 2003

  15. L. Kirkup, Data Analysis with Excel, chap. 6 (Cambridge University Press, Cambridge, 2002)

  16. X. Li, X. Xu, Y. Dan, J. Feng, L. Ge, M. Zhang, Cryst. Res. Technol. 43, 1062 (2008)

    Article  Google Scholar 

  17. N.I. Wakayama, J. Cryst. Growth 191, 199 (1998)

    Article  ADS  Google Scholar 

  18. M. Taleb, C. Didierjean, C. Jelsch, J.P. Mangeot, A. Aubry, J. Cryst. Growth 232, 250 (2001)

    Article  ADS  Google Scholar 

  19. J.A. Marqusee, J. Ross, J. Chem. Phys. 79, 373 (1983)

    Article  ADS  Google Scholar 

  20. M. Ataka, M. Asai, Biophys. J. 58, 807 (1990)

    Article  ADS  Google Scholar 

  21. Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)

    Google Scholar 

  22. D.A. Barlow, J.K. Baird, C.-H. Su, J. Cryst. Growth 264, 417 (2004)

    Article  ADS  Google Scholar 

  23. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    Article  ADS  Google Scholar 

  24. A. Navarro, H.-S. Wu, S.S. Wang, Sep. Purif. Technol. 68, 129 (2009)

    Article  Google Scholar 

  25. M.V. Saikumar, C.E. Glatz, M.A. Larson, J. Cryst. Growth 187, 277 (1998)

    Article  ADS  Google Scholar 

  26. J.K. Baird, J. Cryst. Growth 204, 553 (1999)

    Article  ADS  Google Scholar 

  27. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 345 (1961)

    Google Scholar 

  28. C. Wagner, Z. Electrochem. 65, 581 (1961)

    Google Scholar 

  29. J.D. Rowe, J.K. Baird, Int. J. Thermophys. 28, 855 (2007)

    Article  ADS  Google Scholar 

  30. O. Penrose, J. Stat. Phys. 89, 305 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. G. Madras, B.J. McCoy, Chem. Eng. Sci. 57, 3809 (2002)

    Article  Google Scholar 

  32. C. Noguera, B. Fritz, A. Clement, A. Baronnet, J. Cryst. Growth 297, 180 (2006)

    Article  ADS  Google Scholar 

  33. M. Uwaha, K. Koyama, J. Cryst. Growth 312, 1046 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Baird.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baird, J.K., McFeeters, R.L. & Caraballo, K.G. Specific Rate of Protein Crystallization Determined by the Guggenheim Method. Int J Thermophys 35, 830–840 (2014). https://doi.org/10.1007/s10765-012-1377-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1377-8

Keywords

Navigation