Advertisement

International Journal of Thermophysics

, Volume 35, Issue 5, pp 830–840 | Cite as

Specific Rate of Protein Crystallization Determined by the Guggenheim Method

  • James K. Baird
  • Robert L. McFeeters
  • Katiuska G. Caraballo
Article
  • 248 Downloads

Abstract

The biological function of a protein is intimately related to its three-dimensional molecular structure. Although X-ray diffraction from single crystals can be employed to solve for the molecular structure, use of this method is often impeded by the slow rate of precipitation of crystals from the pH buffered, aqueous solutions of strong electrolytes which ordinarily serve as growth media. The rate of crystallization can be measured as a function of growth solution conditions by growing the crystals in a dilatometer. As the crystallization progresses, the rate of change of the system volume caused by the difference in density between the crystals and the solution is reflected in the rate of change of the height of the fluid in the capillary side arm of the dilatometer. In the case of the proteins, lysozyme, and canavalin, this height changes exponentially with time, which serves to define a first-order rate constant or specific crystallization rate, k. A dozen such experiments may be needed to determine how \(k\) depends upon pH, electrolyte concentration, and temperature. Each experiment can require 4 or 5 days to reach equilibrium. If height measurements are made equally spaced in time, however, early time data can be combined according to the Guggenheim procedure, and the value of k can be determined without the experiment having to reach equilibrium. By using this method, the time required to complete an experiment can be reduced by as much as 50 %.

Keywords

Canavalin First-order kinetics Guggenheim method  pH Protein crystal growth Sodium chloride Temperature 

References

  1. 1.
    G.H. Stout, L.H. Jensen, X-ray Structure Determination: A Practical Guide, 2nd edn. (Wiley, New York, 1989)Google Scholar
  2. 2.
    A.F. McPherson, Crystallization of Biological Macromolecules (Cold Spring Harbor Laboratory Press, New York, 1999)Google Scholar
  3. 3.
    J.K. Baird, Y.W. Kim, Mol. Phys. 100, 1855 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Y.W. Kim, D.A. Barlow, K.G. Caraballo, J.K. Baird, Mol. Phys. 10, 2677 (2003)CrossRefADSGoogle Scholar
  5. 5.
    S.B. Howard, P.J. Twigg, J.K. Baird, E.J. Meehan, J. Cryst. Growth 90, 94 (1988)CrossRefADSGoogle Scholar
  6. 6.
    E.L. Forsythe, R.A. Judge, M.L. Pusey, J. Chem. Eng. Data 44, 637 (1999)CrossRefGoogle Scholar
  7. 7.
    R.C. DeMattei, R.S. Feigelson, J. Cryst. Growth 110, 34 (1991)CrossRefADSGoogle Scholar
  8. 8.
    E.L. Forsythe, M.L. Pusey, J. Cryst. Growth 139, 89 (1994)CrossRefADSGoogle Scholar
  9. 9.
    R.A. Judge, E.L. Forsythe, M.L. Pusey, Cryst. Growth Des. 10, 3164 (2010)CrossRefGoogle Scholar
  10. 10.
    J.K. Baird, J.C. Clunie, Phys. Chem. Liq. 37, 285 (1999)CrossRefGoogle Scholar
  11. 11.
    J.K. Baird, S.C. Hill, J.C. Clunie, J. Cryst. Growth 196, 220 (1999)CrossRefADSGoogle Scholar
  12. 12.
    K.G. Caraballo, J.K. Baird, J.D. Ng, Cryst. Growth Des. 6, 874 (2006)CrossRefGoogle Scholar
  13. 13.
    J.W. Moore, R.G. Pearson, Kinetics and Mechanism (Wiley, New York, 1981)Google Scholar
  14. 14.
    K.G. Caraballo, Kinetics of the Crystallization of Canavalin by the Measurement of the Supersaturation Decay, Materials Science M.S. thesis, University of Alabama in Huntsville, Huntsville, AL, 2003Google Scholar
  15. 15.
    L. Kirkup, Data Analysis with Excel, chap. 6 (Cambridge University Press, Cambridge, 2002)Google Scholar
  16. 16.
    X. Li, X. Xu, Y. Dan, J. Feng, L. Ge, M. Zhang, Cryst. Res. Technol. 43, 1062 (2008)CrossRefGoogle Scholar
  17. 17.
    N.I. Wakayama, J. Cryst. Growth 191, 199 (1998)CrossRefADSGoogle Scholar
  18. 18.
    M. Taleb, C. Didierjean, C. Jelsch, J.P. Mangeot, A. Aubry, J. Cryst. Growth 232, 250 (2001)CrossRefADSGoogle Scholar
  19. 19.
    J.A. Marqusee, J. Ross, J. Chem. Phys. 79, 373 (1983)CrossRefADSGoogle Scholar
  20. 20.
    M. Ataka, M. Asai, Biophys. J. 58, 807 (1990)CrossRefADSGoogle Scholar
  21. 21.
    Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)Google Scholar
  22. 22.
    D.A. Barlow, J.K. Baird, C.-H. Su, J. Cryst. Growth 264, 417 (2004)CrossRefADSGoogle Scholar
  23. 23.
    D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)CrossRefADSGoogle Scholar
  24. 24.
    A. Navarro, H.-S. Wu, S.S. Wang, Sep. Purif. Technol. 68, 129 (2009)CrossRefGoogle Scholar
  25. 25.
    M.V. Saikumar, C.E. Glatz, M.A. Larson, J. Cryst. Growth 187, 277 (1998)CrossRefADSGoogle Scholar
  26. 26.
    J.K. Baird, J. Cryst. Growth 204, 553 (1999)CrossRefADSGoogle Scholar
  27. 27.
    I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 345 (1961)Google Scholar
  28. 28.
    C. Wagner, Z. Electrochem. 65, 581 (1961)Google Scholar
  29. 29.
    J.D. Rowe, J.K. Baird, Int. J. Thermophys. 28, 855 (2007)CrossRefADSGoogle Scholar
  30. 30.
    O. Penrose, J. Stat. Phys. 89, 305 (1997)CrossRefMATHMathSciNetADSGoogle Scholar
  31. 31.
    G. Madras, B.J. McCoy, Chem. Eng. Sci. 57, 3809 (2002)CrossRefGoogle Scholar
  32. 32.
    C. Noguera, B. Fritz, A. Clement, A. Baronnet, J. Cryst. Growth 297, 180 (2006)CrossRefADSGoogle Scholar
  33. 33.
    M. Uwaha, K. Koyama, J. Cryst. Growth 312, 1046 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • James K. Baird
    • 1
  • Robert L. McFeeters
    • 1
  • Katiuska G. Caraballo
    • 2
  1. 1.Department of Chemistry and Materials Science Graduate ProgramUniversity of Alabama in HuntsvilleHuntsvilleUSA
  2. 2.Organics DepartmentSouth East WaterSurreyUK

Personalised recommendations