Advertisement

International Journal of Thermophysics

, Volume 34, Issue 5, pp 955–961 | Cite as

Thermal Characterization of Solutions Containing Gold Nanoparticles at Different pH Values

  • J. L. Jiménez-Pérez
  • J. F. Sánchez-Ramírez
  • Z. N. Correa-Pacheco
  • A. Cruz-Orea
  • E. Chigo Anota
  • F. Sánchez-Sinencio
Article

Abstract

The thermal lens spectrometry (TLS) technique was used to obtain the thermal diffusivity of solutions containing gold nanoparticles (15 nm average diameter) at different pH values. TLS, in a mode-mismatched dual beam configuration, provides a reliable alternative to measure, with high sensitivity, the thermal diffusivities of semitransparent materials, and low thermal diffusivities. The results show that the nanofluid thermal diffusivity increases when the pH is increased. These results will be compared with reported studies for nanofluids with variable pH. From this comparison, it can be seen that the pH values of the solutions influenced the superficial density of charges in the nanoparticles. Also, optical absorption spectra for these gold nanoparticle solutions were obtained using a spectrophotometer, and the nanoparticle size was obtained by the TEM technique. The present measurements were performed at room temperature. This study is important for some medical applications such as photothermal cancer therapy.

Keywords

Gold nanoparticles Nanofluids Photothermal techniques  Thermal lens spectrometry 

Notes

Acknowledgments

We thank Conacyt, ICyTDF, COFAA, CLAF, and SIP-IPN, México for their partial financial support. One of the authors (A. Cruz-Orea) is grateful for partial financial support from CONACYT Project No. 103632.

References

  1. 1.
    D. Kumar Sarit, C.S.U. Stephen, P.E. Hrishikesh, Heat Transf. Eng. 27, 3 (2006)Google Scholar
  2. 2.
    V. Vasu, K. Rama Krishna, A.C.S. Kumar, Int. J. Nanopart. 1, 32 (2008)CrossRefGoogle Scholar
  3. 3.
    D.K. Hartlen, A.P.T. Athanasopoulus, V. Kitaev, Langmuir 24, 1714 (2008)CrossRefGoogle Scholar
  4. 4.
    M.P. Pileni, J. Phys. Chem. C 111, 9019 (2007)CrossRefGoogle Scholar
  5. 5.
    J.R. Whinnery, Acc. Chem. Res. 7, 225 (1974)CrossRefGoogle Scholar
  6. 6.
    N.J. Dovichi, J.M. Harris, Anal. Chem. 51, 728 (1979)CrossRefGoogle Scholar
  7. 7.
    C.V. Bindhu, S.S. Harial, R.C. Issac, V.P.N. Nampoori, C.P.G. Vallabhan, J. Phys. D 29, 1074 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    P.R.B. Pedreira, L. Hirsh, J.R.D. Pereira, A.N. Medina, Rev. Sci. Instrum. 74, 808 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    J. Nam, N. Won, H. Jin, H. Chung, S. Kim, J. Am. Chem. Soc. 131, 13639 (2009)CrossRefGoogle Scholar
  10. 10.
    R. Gutiérrez Fuentes, J.F. Sánchez Ramírez, J.L. Jiménez Pérez, J.A. Pescador Rojas, E. Ramón Gallegos, A. Cruz Orea, Int. J. Thermophys. 28, 1048 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    J. Chen, R.D. Lowe, R.D. Snook, Chem. Phys. 165, 385 (1992)CrossRefGoogle Scholar
  12. 12.
    J. Park, V. Privman, E. Matijevic, Langmuir 12, 4332 (1996)Google Scholar
  13. 13.
    T.A.S. Albuquerque, P.R.B. Pedreira, A.N. Medina, J.R.D. Pereira, A.C. Bento, M.L. Baesso, Rev. Sci. Instrum. 74, 694 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    S.M. Shibli, A.L.L. Dantas, A. Bee, Braz. J. Phys. 31, 418 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    X.J. Wang, X.F. Li, Chin. Phys. Lett. 26, 056601 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • J. L. Jiménez-Pérez
    • 1
  • J. F. Sánchez-Ramírez
    • 1
  • Z. N. Correa-Pacheco
    • 1
  • A. Cruz-Orea
    • 2
  • E. Chigo Anota
    • 3
  • F. Sánchez-Sinencio
    • 2
  1. 1.Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas del IPNAvenida Instituto Politécnico Nacional No. 2580MexicoMexico
  2. 2.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMexicoMexico
  3. 3.Cuerpo Académico de Ingeniería en Materiales, Facultad de Ingeniería QuímicaBUAP, C. U. PueblaMexico

Personalised recommendations