Advertisement

International Journal of Thermophysics

, Volume 33, Issue 12, pp 2339–2350 | Cite as

Full-Potential Calculation of Structural, Electronic, and Thermodynamic Properties of Fluoroperovskite \(\text{ CsMF}_{3}\) (M = Be and Mg)

  • M. Harmel
  • H. Khachai
  • A. Ameri
  • N. Baki
  • A. Haddou
  • M. Khalfa
  • B. Abbar
  • S. Bin Omran
  • G. Uğur
  • Ş. Uğur
  • R. Khenata
Article

Abstract

The structural and electronic properties of the cubic fluoroperoveskite \(\text{ CsBeF}_{3}\) and \(\text{ CsMgF}_{3}\) have been investigated using the full-potential-linearized augmented plane wave method within the density functional theory. The exchange-correlation potential was treated with the local density approximation and the generalized gradient approximation. The calculations of the electronic band structures show that \(\text{ CsBeF}_{3 }\) has an indirect bandgap, whereas \(\text{ CsMgF}_{3}\) has a direct bandgap. Through the quasi-harmonic Debye model, in which the phononic effects are considered, the effect of pressure \(P\) and temperature \(T\) on the lattice parameter, bulk modulus, thermal expansion coefficient, Debye temperature, and the heat capacity for \(\text{ CsBeF}_{3}\) and \(\text{ CsMgF}_{3}\) compounds are investigated for the first time.

Keywords

Density functional theory (DFT) Electronic properties   Fluoroperoveskite Thermodynamic properties 

Notes

Acknowledgments

Authors (R.K.) and (S.B.O.) acknowledge the financial support by the Deanship of Scientific Research at King Saud University for funding the work through the research group Project No. RPG-VPP-088. For author H. Khachai, this study was supported by the Algerian national research projects PNR (No. 8/0/627).

References

  1. 1.
    L.L. Hench, L.K. West, Principles of Electronic Ceramics (Wiley, New York, 1990), pp. 244–247Google Scholar
  2. 2.
    O. Muller, R. Roy, The Major Ternary Structural Families (Springer, New York, 1974)Google Scholar
  3. 3.
  4. 4.
    G. Horsch, H. Paus, J. Opt. Commun. 60, 69 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    S. Sugano, R.G. Shulman, Phys. Rev. 130, 517 (1963)ADSCrossRefGoogle Scholar
  6. 6.
    B. Kleinman, M. Karplus, Phys. Rev. B 3, 24 (1971)ADSCrossRefGoogle Scholar
  7. 7.
    T.F. Soules, J.W. Richardson, D.M. Vaught, Phys. Rev. B 3, 2186 (1971)ADSCrossRefGoogle Scholar
  8. 8.
    T.F. Soules, E.J. Kelly, D.M. Vaught, J.W. Richardson, Phys. Rev. B 6, 1519 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    L.F. Mattheiss, Phys. Rev. B 6, 4718 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    R.G. Shulman, Y. Yafet, P. Eisenberger, W.E. Blumberg, Proc. Natl. Acad. Sci. USA 73, 1384 (1976)ADSCrossRefGoogle Scholar
  11. 11.
    R. Hua, B. Lei, D. Xie, C. Shi, J. Solid State Chem. 175, 284 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    K. Shimamura, H. Sato, A. Bensalah, V. Sudesh, H. Machida, N. Sarukura, T. Fukuda, Cryst. Res. Technol. 36, 801 (2001)CrossRefGoogle Scholar
  13. 13.
    P. Berastegui, S. Hull, S.-G. Eriksson, J. Phys. Condens. Matter 13, 5077 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Julliard, J. Nouet, Rev. Phys. Appl. 10, 325 (1975)CrossRefGoogle Scholar
  15. 15.
    R.R. Daniels, G. Margaritondo, R.A. Heaton, C.C. Lin, Phys. Rev. B 27, 3878 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Verma, V.K. Jindal, J. Alloys Compd. 485, 514 (2009)CrossRefGoogle Scholar
  17. 17.
    J. Tong, C. Lee, M.-H. Whangbo, R.K. Kremer, A. Simon, J. Köhler, Solid State Sci. 12, 680 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864 (1964)MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    K. Schwarz, P. Blaha, G.K.H. Masden, Comput. Phys. Commun. 147, 71 (2002)ADSMATHCrossRefGoogle Scholar
  20. 20.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  21. 21.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    R.A. Robie, J.L. Edwards, J. Appl. Phys. 37, 2659 (1966)ADSCrossRefGoogle Scholar
  23. 23.
    M.A. Blanco, E. Francisco, V. Luana, Comput. Phys. Commun. 158, 57 (2004)ADSMATHCrossRefGoogle Scholar
  24. 24.
    M.A. Blanco, A. Martín Pendás, J. Mol. Struct. THEOCHEM 368, 245 (1996)CrossRefGoogle Scholar
  25. 25.
    M. Flórez, J.M. Recio, E. Francisco, M.A. Blanco, A. Martín Pendás, Phys. Rev. B 66, 144112 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    E. Francisco, J.M. Recio, M.A. Blanco, A. Martín Pendás, J. Phys. Chem. 102, 1595 (1998)CrossRefGoogle Scholar
  27. 27.
    E. Francisco, M.A. Sanjurjo, Phys. Rev. B 63, 09410 (2001)CrossRefGoogle Scholar
  28. 28.
    A. Bouhemadou, R. Khenata, M. Chegaar, Eur. Phys. J. B 56, 209 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    R. Hill, Proc. Phys. Soc. Lond. A 65, 349 (1952)ADSCrossRefGoogle Scholar
  30. 30.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)MathSciNetADSMATHCrossRefGoogle Scholar
  31. 31.
    G. Wu, R. Hoppe, Z. Anorg, Allg. Chem. 514, 92 (1984)CrossRefGoogle Scholar
  32. 32.
    G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, A. Delin, B. Johansson, Phys. Rev. B 76, 014107 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    G. Vaitheeswaran, V. Kanchana, R.S. Kumar, A.L. Cornelius, M.F. Nicol, A. Svane, N.E. Christensen, B. Johansson, Phys. Rev. B 81, 075105 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    L.F. Mattheiss, Phys. Rev. B 2, 3918 (1970)ADSCrossRefGoogle Scholar
  35. 35.
    L.F. Mattheiss, Phys. Rev. 181, 987 (1969)ADSCrossRefGoogle Scholar
  36. 36.
    M. Sahnoun, M. Zbiri, C. Daul, R. Khenata, H. Baltache, M. Driz, Mater. Chem. Phys. 91, 185 (2005)CrossRefGoogle Scholar
  37. 37.
    Z.F. Hou, Physica B 403, 2624 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)ADSCrossRefGoogle Scholar
  40. 40.
    A.T. Petit, P.L. Dulong, Ann. Chim. Phys. 10, 395 (1819)Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Harmel
    • 1
  • H. Khachai
    • 2
    • 1
  • A. Ameri
    • 1
  • N. Baki
    • 1
  • A. Haddou
    • 1
    • 2
  • M. Khalfa
    • 1
  • B. Abbar
    • 3
  • S. Bin Omran
    • 4
  • G. Uğur
    • 5
  • Ş. Uğur
    • 5
  • R. Khenata
    • 6
  1. 1.Département de Physique, Faculté des SciencesUniversité Djillali LiabèsSidi Bel AbbèsAlgeria
  2. 2.Applied Materials Laboratory, Electronics DepartmentDjillali Liabes University of Sidi Bel-AbbesSidi Bel AbbèsAlgeria
  3. 3.Laboratoire de Modélisation et Simulation en Sciences des Matériaux, Physics DepartmentDjillali Liabès University of Sidi Bel-AbbèsSidi Bel AbbèsAlgeria
  4. 4.Department of Physics and AstronomyFaculty of Science, King Saud UniversityRiyadhSaudi Arabia
  5. 5.Department of Physics, Faculty of SciencesGazi UniversityAnkaraTurkey
  6. 6.Laboratoire de Physique Quantique et de Modélisation Mathématique de la matière (LPQ3M)Université de MascaraMascaraAlgeria

Personalised recommendations