Advertisement

International Journal of Thermophysics

, Volume 33, Issue 12, pp 2407–2423 | Cite as

Plane Waves in Generalized Thermo-microstretch Elastic Solid with Thermal Relaxation Using Finite Element Method

  • Ibrahim A. Abbas
  • Mohamed I. A. Othman
Article

Abstract

The propagation of plane waves in a thermo-microstretch elastic solid half-space as proposed by Lord–Shulman as well as the classical dynamical coupled theory are discussed. The problem has been solved numerically using a finite element method. Numerical results for the displacement components, force stresses, temperature, couple stresses, and microstress distribution are obtained. The variations of the considered variables through the horizontal distance are given and illustrated graphically. Comparisons are made with the results predicted by the theory of generalized thermoelasticity for different values of the relaxation time.

Keywords

Dynamic coupled theory Finite element method Lord–Shulman theory Thermo-microstretch elastic solid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eringen A.C.: Ari Kitabevi Matbassi Istanbul 24, 1 (1971)Google Scholar
  2. 2.
    Eringen A.C.: J. Math. Mech. 15, 909 (1966)MathSciNetMATHGoogle Scholar
  3. 3.
    Eringen A.C.: Int. J. Eng. Sci. 28, 1291 (1990)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Bofill F., Quintanilla R.: Int. J. Eng. Sci. 33, 2115 (1995)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Iesan D., Quintanilla R.: Int. J. Eng. Sci. 43, 885 (2005)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Svanadze M., De Cicco S.: Int. J. Eng. Sci. 43, 417 (2005)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Iesan D., Scalia A.: Int. J. Eng. Sci. 44, 845 (2006)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Othman M.I.A., Lotfy Kh.: Multi. Model. Mater. Struct. 7, 43 (2011)Google Scholar
  9. 9.
    Eringen A.C.: Microcontinuum Field Theories I: Foundation and Solids. Springer, New York (1999)CrossRefGoogle Scholar
  10. 10.
    Iesau D., Nappa L.: Int. J. Eng. Sci. 39, 1815 (2001)CrossRefGoogle Scholar
  11. 11.
    Iesau D., Pompei A.: Int. J. Eng. Sci. 33, 399 (1995)CrossRefGoogle Scholar
  12. 12.
    De Cicco S.: Int. J. Eng. Sci. 41, 187 (2003)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Biot M.: J. Appl. Phys. 27, 240 (1956)MathSciNetADSMATHCrossRefGoogle Scholar
  14. 14.
    Lord H., Shulman Y.: J. Mech. Phys. Solids. 15, 299 (1967)ADSMATHCrossRefGoogle Scholar
  15. 15.
    Muller I.M.: Arch. Ration. Mech. Anal. 41, 319 (1971)CrossRefGoogle Scholar
  16. 16.
    Green A.E., Laws N.: Arch. Ration. Mech. Anal. 45, 47 (1972)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Green A.E., Lindsay K.A.: J. Elast. 2, 1 (1972)MATHCrossRefGoogle Scholar
  18. 18.
    E.S. Suhubi, Thermoelastic Solids, in Continuum Physics, ed. by A.C. Eringen (Academic Press, London, 1975)Google Scholar
  19. 19.
    Kumar R., Singh B.: Proc. Ind. Acad. Sci. (Math. Sci.) 106, 183 (1996)MATHCrossRefGoogle Scholar
  20. 20.
    Kumar R., Singh B.: Int. J. Eng. Sci. 36, 891 (1998)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Othman M.I.A.: J. Therm. Stresses 25, 1027 (2002)CrossRefGoogle Scholar
  22. 22.
    Othman M.I.A., Singh B.: Int. J. Solids Struct. 44, 2748 (2007)MATHCrossRefGoogle Scholar
  23. 23.
    Abbas I.A.: Forschung im Ingenieurwesen 71, 215 (2007)CrossRefGoogle Scholar
  24. 24.
    Youssef H., Abbas I.A.: Comput. Methods Sci. Technol. 13, 95 (2007)Google Scholar
  25. 25.
    Abbas I.A., Abd-allah A.N.: Arch. Appl. Mech. 78, 283 (2008)ADSMATHCrossRefGoogle Scholar
  26. 26.
    Abbas I.A.: Forschung im Ingenieurwesen 72, 101 (2008)CrossRefGoogle Scholar
  27. 27.
    Abbas I.A., Othman M.I.A.: Int. J. Ind. Math. 1, 121 (2009)Google Scholar
  28. 28.
    Wriggers P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science and Arts–KhulaisKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Department of Mathematics, Faculty of ScienceZagazig UniversityZagazigEgypt

Personalised recommendations