Advertisement

International Journal of Thermophysics

, Volume 33, Issue 10–11, pp 2110–2117 | Cite as

Photothermal Characterization of Nanocomposites Based on High Density Polyethylene (HDPE) Filled with Expanded Graphite

  • M. Chirtoc
  • N. Horny
  • J.-F. Henry
  • A. Turgut
  • I. Kökey
  • I. Tavman
  • M. Omastová
Article

Abstract

The effective thermophysical and optical properties of high density polyethylene (HDPE) filled with 50 μm and 5 μm particle sizes of expanded graphite (EG50, EG5) are characterized. The methods used were front- and back-detection modulated photothermal radiometry (FD-, BD-PTR) and BD-flash IR thermography. Results were interpreted according to one-dimensional heat diffusion models. The absolute thermal diffusivity was determined at low frequency from FD- and BD-PTR spectra, while the volumetric heat capacity, the thermal effusivity, and the optical absorption coefficient were determined from broad-band FD-PTR spectra. The directly obtained diffusivity values compare well with those calculated from the heat capacity and thermal effusivity, and with BD-flash results. The errors caused by the finite absorption coefficient of diluted samples are also evaluated and corrected for. A particle-size effect with the opposite influence on thermal and optical properties has been observed. Heat transport parameters of HDPE/EG composites are significantly enhanced (factor of 3 to 4 in thermal diffusivity) at low particle charge before reaching saturation above a 0.10 particle volume fraction. These features are explained in the framework of effective medium models by strongly non-spherical EG particles.

Keywords

Expanded graphite Flash IR thermography HDPE Heat capacity Nanocomposites Optical absorption coefficient Photothermal radiometry Thermal diffusivity Thermal effusivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellingen C.V., Probst N., Grivei E.: Polym. Polym. Compos. 10, 63 (2002)Google Scholar
  2. 2.
    Goyal R.K., Jagadale P.A., Mulik U.P.: J. Appl. Polym. Sci. 111, 2071 (2009)CrossRefGoogle Scholar
  3. 3.
    Matbase, Material Properties Database (www.matbase.com)
  4. 4.
    Goodfellow Inc., Materials Catalogue (www.goodfellow.com)
  5. 5.
    M. Chirtoc, in Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, chap. 2, ed. by E. Marín Moares (Transworld Research Network, Trivandrum, Kerala, India, 2009), pp. 29–63 (www.trnres.com)
  6. 6.
    Chirtoc M.: J. Phys. Conf. Ser. 214, 012005 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Parker W.J., Jenkins R.J., Butler C.P., Abbott G.L.: J. Appl. Phys. 32, 1679 (1961)ADSCrossRefGoogle Scholar
  8. 8.
    M. Chirtoc, N. Horny, I. Tavman, A. Turgut, I. Kökey, M. Omastová, Int. J. Therm. Sci. (2012). doi: 10.1016/j.ijthermalsci.2012.02.015
  9. 9.
    Nordal P.-E., Kanstad S.O.: Phys. Scr. 20, 659 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    Tavman I.H.: Int. Commun. Heat Mass Transfer 25, 723 (1998)CrossRefGoogle Scholar
  11. 11.
    Nan C.W., Birringer R., Clarke D.R., Gleiter H.: J. Appl. Phys. 81, 6692 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • M. Chirtoc
    • 1
  • N. Horny
    • 1
  • J.-F. Henry
    • 1
  • A. Turgut
    • 2
  • I. Kökey
    • 2
  • I. Tavman
    • 2
  • M. Omastová
    • 3
  1. 1.Multiscale Thermophysics Lab. GRESPI-CATHERMUniversité de Reims Champagne Ardenne URCAReimsFrance
  2. 2.Mechanical Engineering DepartmentDokuz Eylul UniversityBornovaTurkey
  3. 3.Polymer Institute, SASBratislavaSlovakia

Personalised recommendations