Skip to main content
Log in

Non-destructive Imaging of Standard Cracks of Railway by Photoacoustic Piezoelectric Technology

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The photoacoustic piezoelectric (PAPE) technique is an effective non-destructive testing technique for detecting defects in materials. In this paper, Chinese national standard railway cracks have been detected by thermal wave imaging based on the PAPE technique. First, the theory of the PAPE technique has been introduced and the corresponding imaging principle has been analyzed. Second, the corresponding experimental system has been setup, and the imaging tests have been carried out. Third, two kinds of standard cracks have been examined by the imaging system. The results show that thermal wave imaging based on the PAPE technique can effectively image and identify the cracks at different depths, which lays a foundation for practical application to the detection of rail cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonno B., Laporte J.L., Tascon D’Leon R.: Rev. Sci. Instrum. 76, 096104 (2005)

    Article  ADS  Google Scholar 

  2. Blonskij I.V., Tkhoryk V.A., Shendeleva M.L.: J. Appl. Phys. 79, 3512 (1996)

    Article  ADS  Google Scholar 

  3. Sun L., Zhang S.Y., Zhao Y.Z., Li Z.Q., Cheng L.P.: Rev. Sci. Instrum. 74, 834 (2003)

    Article  ADS  Google Scholar 

  4. Sun Q.M., Gao C.M., Zhao B.X., Bi Y.F.: Int. J. Thermophys. 31, 1157 (2010)

    Article  ADS  Google Scholar 

  5. Leite N.F., Miranda L.C.M.: Rev. Sci. Instrum. 63, 4398 (1992)

    Article  ADS  Google Scholar 

  6. Gao C.M., Zhang S.Y., Chen Y., Shui X.J., Yang Y.T.: Chin. Sci. Bull. 49, 2115 (2004)

    Google Scholar 

  7. Amato G., Benedetto G., Boarino L., Maccagnani P., Spagnolo R.: AIP Conf. Proc. 463, 309 (1999)

    ADS  Google Scholar 

  8. Nikolić P.M., Djinović Z., Todorović D.M., Jović V., Djurić Z., Bojičić A.I., Urošević D., Blagojević V.: AIP Conf. Proc. 463, 545 (1999)

    ADS  Google Scholar 

  9. Fang J.F., Zhang S.Y., Chen J.C., Zhang Z.N.: J. Appl. Sci. 13, 352 (1995)

    Google Scholar 

  10. Zhang S.Y.: Prog. Phys. 16, 439 (1996)

    Google Scholar 

  11. Coufal H., Grygier R.K., Horne D., Fromm J.: J. Vac. Sci. Technol. 45, 2875 (1987)

    ADS  Google Scholar 

  12. Boccara A.C., Fournier D., Badoz J.: Appl. Phys. Lett. 36, 130 (1980)

    Article  ADS  Google Scholar 

  13. Burgi D.J., Dovici N.J.: Appl. Opt. 26, 4665 (1987)

    Article  ADS  Google Scholar 

  14. Rosencwaig A., Opsal J., Smith W.L., Willenberg D.L.: Appl. Phys. Lett. 46, 1013 (1985)

    Article  ADS  Google Scholar 

  15. Busse G.: Appl. Phys. Lett. 35, 759 (1979)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunming Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, L., Gao, C., Zhao, B. et al. Non-destructive Imaging of Standard Cracks of Railway by Photoacoustic Piezoelectric Technology. Int J Thermophys 33, 2001–2005 (2012). https://doi.org/10.1007/s10765-012-1253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1253-6

Keywords

Navigation