Advertisement

International Journal of Thermophysics

, Volume 34, Issue 12, pp 2297–2306 | Cite as

Thermal-Diffusivity Measurements of Conductive Composites Based on EVA Copolymer Filled With Expanded and Unexpanded Graphite

  • I. H. Tavman
  • A. Turgut
  • H. M. da Fonseca
  • H. R. B. Orlande
  • R. M. Cotta
  • M. Magalhaes
Article

Abstract

In this research, the thermal diffusivity of composites based on ethylene- vinyl acetate (EVA) copolymer filled with two kinds of reinforcement graphite materials was investigated. The reinforcement graphite fillers were untreated natural graphite (UG) and expanded graphite (EG). Composite samples up to 29.3 % graphite particle volumetric concentrations (50 % mass concentration) were prepared by the melt- mixing process in a Brabender Plasticorder. Upon mixing, the EG exfoliates in these films having nanosized thicknesses as evidenced by TEM micrographs. Thus, the thermal diffusivity and electrical conductivity of composites based on the ethylene-vinyl acetate matrix filled with nanostructuralized expanded graphite and standard, micro-sized graphite were investigated. From the experimental results it was deduced that the electrical conductivity was not only a function of filler concentration, but also strongly dependent on the graphite structure. The percolation concentration of the filler was found to be (15 to 17) vol% for micro-sized natural graphite, whereas the percolation concentration of the filler in nanocomposites filled with expanded graphite was much lower, about (5 to 6) vol%. The electrical conductivity of nanocomposites was also much higher than the electrical conductivity of composites filled with micro-sized filler at similar concentrations. Similarly, the values of the thermal diffusivity for the nanocomposites, EG-filled EVA, were significantly higher than the thermal diffusivity of the composites filled with micro-sized filler, UG-filled EVA, at similar concentrations. For 29.3 % graphite particle volumetric concentrations, the thermal diffusivity was 8.23 × 10−7 m2 · s−1 for EG-filled EVA and 6.14 × 10−7 m2 · s−1 for UG-filled EVA. The thermal diffusivity was measured by the flash method.

Keywords

Conductive nanocomposites Electrical conductivity EVA Expanded graphite Unexpanded graphite Flash method Thermal diffusivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fu S.Y., Feng X.Q., Lauke B., Mai Y.W.: Compos. Part B 39, 933 (2008)CrossRefGoogle Scholar
  2. 2.
    Drzal L.T., Fukushima H.: Polym. Prepr. 42, 42 (2001)Google Scholar
  3. 3.
    Viculis L.M., Mack J.J., Kaner R.B.: Science 299, 1361 (2003)CrossRefGoogle Scholar
  4. 4.
    Chen G., Wu C., Weng W., Wu D., Yan W.: Polymer 44, 1781 (2003)CrossRefGoogle Scholar
  5. 5.
    Chen G., Weng W., Wu D., Wu C., Lu J., Wang P., Chen X.: Carbon 42, 753 (2004)CrossRefGoogle Scholar
  6. 6.
    Sheng W., Wong S.C.: Compos. Sci. Technol. 63, 225 (2003)CrossRefGoogle Scholar
  7. 7.
    Zheng W., Wong S.C., Sue H.J.: Polymer 73, 6767 (2002)CrossRefGoogle Scholar
  8. 8.
    Pan Y.X., Yu Z.Z., Ou Y.C., Hu G.H.: J. Polym. Sci., Part B 38, 1626 (2000)CrossRefGoogle Scholar
  9. 9.
    J.W. Shen, X.M. Chen, W.Y. Huang, J. App. Polym. Sci. 88, 1864 (2003)Google Scholar
  10. 10.
    Parker W., Jenkins R., Buttler C., Abott G.: J. Appl. Phys. 32, 1679 (1961)ADSCrossRefGoogle Scholar
  11. 11.
    Cowan R.D.: J. Appl. Phys. 34, 926 (1963)ADSCrossRefGoogle Scholar
  12. 12.
    Beedham K., Dalrymple L.P.: Rev. Int. Hautes Temp. Refract. 7, 278 (1970)Google Scholar
  13. 13.
    Donaldson A.B.: J. Appl. Phys. 43, 4226 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    Clark L.M. III, Taylor R.E.: J. Appl. Phys. 46, 714 (1975)ADSCrossRefGoogle Scholar
  15. 15.
    Degiovanni A.: Int. J. Heat Mass Transf. 30, 2199 (1987)CrossRefGoogle Scholar
  16. 16.
    Cape J., Lehman G.: J. Appl. Phys. 34, 1909 (1963)ADSCrossRefGoogle Scholar
  17. 17.
    Lechner T., Hahne E.: Thermochim. Acta 218, 341 (1993)CrossRefGoogle Scholar
  18. 18.
    Clark L.M. III, Taylor R.: J. Appl. Phys. 46, 714 (1975)ADSCrossRefGoogle Scholar
  19. 19.
    Baba T., Ono A.: Meas. Sci. Technol. 12, 2046 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    van der Pauw L.J.: Philips Res. Rep. 13, 1 (1958)Google Scholar
  21. 21.
    de Souza F.G., Soares B.G., Pinto J.C.: Eur. Polym. J. 44, 3908 (2008)CrossRefGoogle Scholar
  22. 22.
    Svoboda P., Theravalappil R., Poongavalappil S., Vilcakova J., Svobodova D., Mokrejs P., Blaha A.: Polym. Eng. Sci. 52, 1241 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • I. H. Tavman
    • 1
  • A. Turgut
    • 1
  • H. M. da Fonseca
    • 2
  • H. R. B. Orlande
    • 2
  • R. M. Cotta
    • 2
  • M. Magalhaes
    • 2
  1. 1.Department of Mechanical EngineeringDokuz Eylul UniversityBornovaTurkey
  2. 2.COPPE/UFRJ Department of Mechanical EngineeringFederal University of Rio de Janeiro—UFRJRio de JaneiroBrazil

Personalised recommendations