Skip to main content
Log in

Thermal-Diffusivity Measurements of Conductive Composites Based on EVA Copolymer Filled With Expanded and Unexpanded Graphite

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this research, the thermal diffusivity of composites based on ethylene- vinyl acetate (EVA) copolymer filled with two kinds of reinforcement graphite materials was investigated. The reinforcement graphite fillers were untreated natural graphite (UG) and expanded graphite (EG). Composite samples up to 29.3 % graphite particle volumetric concentrations (50 % mass concentration) were prepared by the melt- mixing process in a Brabender Plasticorder. Upon mixing, the EG exfoliates in these films having nanosized thicknesses as evidenced by TEM micrographs. Thus, the thermal diffusivity and electrical conductivity of composites based on the ethylene-vinyl acetate matrix filled with nanostructuralized expanded graphite and standard, micro-sized graphite were investigated. From the experimental results it was deduced that the electrical conductivity was not only a function of filler concentration, but also strongly dependent on the graphite structure. The percolation concentration of the filler was found to be (15 to 17) vol% for micro-sized natural graphite, whereas the percolation concentration of the filler in nanocomposites filled with expanded graphite was much lower, about (5 to 6) vol%. The electrical conductivity of nanocomposites was also much higher than the electrical conductivity of composites filled with micro-sized filler at similar concentrations. Similarly, the values of the thermal diffusivity for the nanocomposites, EG-filled EVA, were significantly higher than the thermal diffusivity of the composites filled with micro-sized filler, UG-filled EVA, at similar concentrations. For 29.3 % graphite particle volumetric concentrations, the thermal diffusivity was 8.23 × 10−7 m2 · s−1 for EG-filled EVA and 6.14 × 10−7 m2 · s−1 for UG-filled EVA. The thermal diffusivity was measured by the flash method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu S.Y., Feng X.Q., Lauke B., Mai Y.W.: Compos. Part B 39, 933 (2008)

    Article  Google Scholar 

  2. Drzal L.T., Fukushima H.: Polym. Prepr. 42, 42 (2001)

    Google Scholar 

  3. Viculis L.M., Mack J.J., Kaner R.B.: Science 299, 1361 (2003)

    Article  Google Scholar 

  4. Chen G., Wu C., Weng W., Wu D., Yan W.: Polymer 44, 1781 (2003)

    Article  Google Scholar 

  5. Chen G., Weng W., Wu D., Wu C., Lu J., Wang P., Chen X.: Carbon 42, 753 (2004)

    Article  Google Scholar 

  6. Sheng W., Wong S.C.: Compos. Sci. Technol. 63, 225 (2003)

    Article  Google Scholar 

  7. Zheng W., Wong S.C., Sue H.J.: Polymer 73, 6767 (2002)

    Article  Google Scholar 

  8. Pan Y.X., Yu Z.Z., Ou Y.C., Hu G.H.: J. Polym. Sci., Part B 38, 1626 (2000)

    Article  Google Scholar 

  9. J.W. Shen, X.M. Chen, W.Y. Huang, J. App. Polym. Sci. 88, 1864 (2003)

    Google Scholar 

  10. Parker W., Jenkins R., Buttler C., Abott G.: J. Appl. Phys. 32, 1679 (1961)

    Article  ADS  Google Scholar 

  11. Cowan R.D.: J. Appl. Phys. 34, 926 (1963)

    Article  ADS  Google Scholar 

  12. Beedham K., Dalrymple L.P.: Rev. Int. Hautes Temp. Refract. 7, 278 (1970)

    Google Scholar 

  13. Donaldson A.B.: J. Appl. Phys. 43, 4226 (1972)

    Article  ADS  Google Scholar 

  14. Clark L.M. III, Taylor R.E.: J. Appl. Phys. 46, 714 (1975)

    Article  ADS  Google Scholar 

  15. Degiovanni A.: Int. J. Heat Mass Transf. 30, 2199 (1987)

    Article  Google Scholar 

  16. Cape J., Lehman G.: J. Appl. Phys. 34, 1909 (1963)

    Article  ADS  Google Scholar 

  17. Lechner T., Hahne E.: Thermochim. Acta 218, 341 (1993)

    Article  Google Scholar 

  18. Clark L.M. III, Taylor R.: J. Appl. Phys. 46, 714 (1975)

    Article  ADS  Google Scholar 

  19. Baba T., Ono A.: Meas. Sci. Technol. 12, 2046 (2001)

    Article  ADS  Google Scholar 

  20. van der Pauw L.J.: Philips Res. Rep. 13, 1 (1958)

    Google Scholar 

  21. de Souza F.G., Soares B.G., Pinto J.C.: Eur. Polym. J. 44, 3908 (2008)

    Article  Google Scholar 

  22. Svoboda P., Theravalappil R., Poongavalappil S., Vilcakova J., Svobodova D., Mokrejs P., Blaha A.: Polym. Eng. Sci. 52, 1241 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. H. Tavman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavman, I.H., Turgut, A., da Fonseca, H.M. et al. Thermal-Diffusivity Measurements of Conductive Composites Based on EVA Copolymer Filled With Expanded and Unexpanded Graphite. Int J Thermophys 34, 2297–2306 (2013). https://doi.org/10.1007/s10765-012-1231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1231-z

Keywords

Navigation