International Journal of Thermophysics

, Volume 33, Issue 1, pp 6–21 | Cite as

Burnett Method with Absolute Pressure Transducer and Measurements for PVT Properties of Nitrogen and Hydrogen up to 473 K and 100 MPa

  • N. Sakoda
  • K. Shindo
  • K. Motomura
  • K. Shinzato
  • M. Kohno
  • Y. Takata
  • M. Fujii


A measurement method for PVT properties of high-temperature and high-pressure gases was developed by simplifying the Burnett method and revising the data acquisition procedure. Instead of a differential pressure transducer, which is traditionally used, an absolute pressure transducer is used in the present method, and the measurement of pressure becomes easier. However, the absolute pressure transducer is placed outside the constant temperature bath because of the difficulty of its use in high-temperature surroundings, and some parts with different temperatures from the sample vessels exist as dead space. The present method takes into account the effect of the dead space in the data acquisition procedure. Nitrogen was measured in the temperature range from 353 K to 473 K and at pressures up to 100 MPa to determine the apparatus constants, and then, hydrogen was measured at 473 K and up to 100 MPa. The determined densities are in agreement within uncertainties of 0.07% to 0.24% (k = 2), both with the latest equation of state and existing measured data.


Burnett method High pressure High temperature PVT properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakoda N., Shindo K., Shinzato K., Kohno M., Takata Y., Fujii M.: Int. J. Thermophys. 31, 276 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    Burnett E.S.: J. Appl. Mech. 3, A136 (1936)Google Scholar
  3. 3.
    Waxman M., Hastings J.R.: J. Res. Nat. Bur. Stand. 75C, 165 (1971)Google Scholar
  4. 4.
    Straty G.C., Palavra A.M.F.: J. Res. Nat. Bur. Stand. 89, 375 (1984)Google Scholar
  5. 5.
    Blancett A.L., Hall K.R., Canfield F.B.: Physica 47, 75 (1970)ADSCrossRefGoogle Scholar
  6. 6.
    Hall K.R., Canfield F.B.: Physica 47, 99 (1970)ADSCrossRefGoogle Scholar
  7. 7.
    Hall K.R., Canfield F.B.: Physica 47, 219 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    Provine J.A., Canfield F.B.: Physica 52, 79 (1971)ADSCrossRefGoogle Scholar
  9. 9.
    T. Hondo, Y. Kayukawa, K. Watanabe, in Proceedings of the Asian Conference on Refrigeration and Air Conditioning (2002), p. 159Google Scholar
  10. 10.
    Sakoda N., Shindo K., Shinzato K., Kohno M., Takata Y., Fujii M.: Netsu Bussei (Jpn. J. Thermophys. Prop.) 24, 28 (2010)CrossRefGoogle Scholar
  11. 11.
    Eubank P.T., Joffrion L.L., Patel M.R., Warowny W.: J. Chem. Thermodyn. 20, 1009 (1988)CrossRefGoogle Scholar
  12. 12.
    Span R., Lemmon E.W., Jacobsen R.T, Wagner W., Yokozeki A.: J. Phys. Chem. Ref. Data 29, 1361 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    A. van Itterbeek, Physics of High Pressures and the Condensed Phase (North-Holland Pub. Co., Amsterdam, 1965), p. 73Google Scholar
  14. 14.
    Inco Alloys International, Inconel alloy 625, 5th edn. (1985)Google Scholar
  15. 15.
    Special Metals (2006), Accessed 7 April 2010
  16. 16.
    ISO/IEC Guide 98-3 (2008), Accessed 7 October 2011
  17. 17.
    Hwang C.-A., Simon P.P., Hou H., Hall K.R., Holste J.C., Marsh K.N.: J. Chem. Thermodyn. 29, 1455 (1997)CrossRefGoogle Scholar
  18. 18.
    International Union of Pure and Applied Chemistry (IUPAC), Physical Chemistry Division, Commission on Thermodynamics, Measurement of the Thermodynamic Properties of Single Phases, ed. by A.R.H. Goodwin, K.N. Marsh, W.A. Wakeham (Elsevier, Amsterdam, 2003), p. 182Google Scholar
  19. 19.
    Leachman J.W., Jacobsen R.T, Penoncello S.G., Lemmon E.W.: J. Phys. Chem. Ref. Data 38, 721 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Michels A., Goudeket M.: Physica 8, 347 (1941)ADSCrossRefGoogle Scholar
  21. 21.
    Michels A., de Graaff W., Wassenaar T., Levelt J.M.H., Louwerse P.: Physica 25, 25 (1959)ADSCrossRefGoogle Scholar
  22. 22.
    Wiebe R., Gaddy V.L.: J. Am. Chem. Soc. 60, 2300 (1938)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • N. Sakoda
    • 1
  • K. Shindo
    • 2
  • K. Motomura
    • 2
  • K. Shinzato
    • 3
  • M. Kohno
    • 2
    • 4
  • Y. Takata
    • 2
    • 4
  • M. Fujii
    • 3
  1. 1.International Research Center for Hydrogen EnergyKyushu UniversityFukuokaJapan
  2. 2.Department of Mechanical EngineeringKyushu UniversityFukuokaJapan
  3. 3.Research Center for Hydrogen Industrial Use and Storage (HYDROGENIUS)National Institute of Advanced Industrial Science and Technology (AIST)FukuokaJapan
  4. 4.International Institute for Carbon-Neutral Energy Research (I2CNER)Kyushu UniversityFukuokaJapan

Personalised recommendations