International Journal of Thermophysics

, Volume 34, Issue 12, pp 2371–2384 | Cite as

Prediction of Thermal Conductivity of Aluminum Nanocluster-Filled Mesoporous Silica (Al/MCM-41)

  • Congliang Huang
  • Yanhui Feng
  • Xinxin Zhang
  • Jing Li
  • Liu Cui
  • Ge Wang
  • Mu Yang


MCM-41 consists of a hexagonal array of long, unconnected cylindrical pores with diameters that can be tailored within the range 1.6 nm to 10 nm. As a porous silica nanomaterial, MCM-41 is a promising porous substrate for mesoporous composites with extremely high or low thermal conductivity. In this article, the structural unit of MCM-41 was established first and an equilibrium molecular dynamics simulation was performed to determine the shell thermal conductivity of MCM-41. Then, based on one-dimensional (1D) heat transfer analysis, a mathematical expression for the effective thermal conductivity (ETC) of Al nanocluster-filled mesoporous MCM-41 (Al/MCM-41) was obtained. The effects of porosity and the filling ratio of nanoclusters in the mesochannels were further investigated. As the porosity is greater than 75 %, the ETC of only-air-filling mesoporous MCM-41 in all directions tends to approach the thermal conductivity of air. It seems that Al nanoclusters have negligible effects on the ETC of the composite, except that mesochannels are almost completely filled with Al nanowires.


Effective thermal conductivity Mesochannel Mesoporous composite Molecular dynamics Nanocluster Porous silica 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T.W., Olson D.H., Sheppard E.W.: J. Am. Chem. Soc. 114, 10834 (1992)CrossRefGoogle Scholar
  2. 2.
    Kresge C.T., Leonowicz M.E., Roth W.J., Vartuli J.C., Beck J.S.: Nature 359, 710 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    Maddox M.W., Olivier J.P., Gubbins K.E.: Langmuir 13, 1737 (1997)CrossRefGoogle Scholar
  4. 4.
    C. Bischof, M. Hartmann, in Proceedings of the 12th International Zeolite Conference, vol. 2, 1998 Baltimore, MD, p. 809Google Scholar
  5. 5.
    Adhyapak P.V., Karandikar P., Vijayamohanan K., Athawale A.A., Chandwadkar A.J.: Mater. Lett. 58, 1168 (2004)CrossRefGoogle Scholar
  6. 6.
    Huang X.B., Dong W.J., Wang G., Yang M., Tan L., Feng Y.H., Zhang X.X.: J. Colloid Interface Sci. 359, 40 (2011)CrossRefGoogle Scholar
  7. 7.
    Ciuparu D., Chen Y., Lim S., Haller G.L., Pfefferle L.: J. Phys. Chem. B 108, 503 (2004)CrossRefGoogle Scholar
  8. 8.
    Kleestorfer K., Vinek H., Jentys A.: J. Mol. Catal. A Chem. 166, 53 (2001)CrossRefGoogle Scholar
  9. 9.
    Corma A.: Chem. Rev. 97, 2373 (1997)CrossRefGoogle Scholar
  10. 10.
    Edler K.J., Dougherty J., Durand R., Iton L., Kirton G., Lockhart G., Wang Z., Withers R., White J.W.: Colloids Surf. A 102, 213 (1995)CrossRefGoogle Scholar
  11. 11.
    Christian S., Jorge G., Paul A.W., Nigel A.S.: J. Phys. Chem. B 110, 319 (2006)Google Scholar
  12. 12.
    Verlet L.: Phys. Rev. 159, 98 (1967)ADSCrossRefGoogle Scholar
  13. 13.
    Barker J.A., Fisher R.A., Watts R.O.: Mol. Phys. 21, 657 (1971)ADSCrossRefGoogle Scholar
  14. 14.
    Allen M.P., Tildesley D.J.: Computer Simulation of Liquids, pp. 147–149. Oxford University Press, New York (1989)Google Scholar
  15. 15.
    Flikkema E., Bromley S.T.: Chem. Phys. Lett. 378, 622 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    H.C. Andersen, M.P. Allen, A. Bellemans, J. Board, J.H.R. Clarke, M. Ferrario, J.M. Haile, S. Nosé, J.V. Opheusden, J.P. Ryckaert, New molecular dynamics methods for various ensembles (Technical report, Rapport d’activité scientifique du CECAM, 1984), pp. 82–115Google Scholar
  17. 17.
    Allen M.P., Tildesley D.J.: Computer Simulation of Liquids, pp. 33–46. Oxford University Press, New York (1989)Google Scholar
  18. 18.
    Schelling P.K., Phillpot S.R., Keblinski P.: Phys. Rev. B. 65, 144306 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Allen M.P., Tildesley D.J.: Computer Simulation of Liquids, pp. 58–64. Oxford University Press, New York (1989)Google Scholar
  20. 20.
    Patrick K.S., Simon R.P., Pawel K.: Phys. Rev. B 65, 144306 (2002)CrossRefGoogle Scholar
  21. 21.
    Zeng T., Chen G.: Trans. ASME J. Heat Transf. 123, 340 (2001)CrossRefGoogle Scholar
  22. 22.
    Sergio Moreno M., Weyland M., Midgley P.A., Bengoa J.F., Cagnoli M.V., Gallegos N.G., Alvarez A.M., Marchetti S.G.: Micron 37, 52 (2006)CrossRefGoogle Scholar
  23. 23.
    Johnson R.A.: Phys. Rev. B 39, 12554 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    Ercolessi F., Adams J.B.: Europhys. Lett. 26, 583 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Lu X., Caps R., Fricke J., Alviso C.T., Pekala R.W.: J. Non-Cryst. Solids 188, 226 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Bruggeman D.A.G.: Ann. Phys. (Leipzig) 24, 636 (1935)ADSCrossRefGoogle Scholar
  27. 27.
    Every A.G., Tzou Y., Hasselman D.P.H., Raj R.: Acta Metall. Mater. 40, 123 (1992)CrossRefGoogle Scholar
  28. 28.
    Liang J.Z., Li F.H.: Polym. Test. 26, 1025 (2007)CrossRefGoogle Scholar
  29. 29.
    Chen Z.S., Qian J., Ye Y.H.: J. China Univ. Sci. Technol. 22, 416 (1992)Google Scholar
  30. 30.
    Progelhof R.C., Throne J.L., Ruetsch R.R.: Polym. Eng. Sci. 16, 615 (1976)CrossRefGoogle Scholar
  31. 31.
    Zeng T., Chen G.: Trans. ASME J. Heat Transf. 123, 340 (2001)CrossRefGoogle Scholar
  32. 32.
    Fricke J., Tillotson T.: Thin Solid Films 297, 212 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    Torquato S., Truskett T.M., Debenedetti P.G.: Phys. Rev. Lett. 84, 2064 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    Li X.M., Wang D.S., Tang L.B., Dong K., Wu Y.J., Yang P.Z., Zhang P.X.: Appl. Surf. Sci. 255, 7529 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    Hu A., Guo J.Y., Alarifi H., Patane G., Zhou Y., Compagnini G., Xu C.X.: Appl. Phys. Lett. 97, 153117 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Congliang Huang
    • 1
  • Yanhui Feng
    • 1
  • Xinxin Zhang
    • 1
  • Jing Li
    • 1
  • Liu Cui
    • 1
  • Ge Wang
    • 2
  • Mu Yang
    • 2
  1. 1.Department of Thermal EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.School of Materials Science and EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations