International Journal of Thermophysics

, Volume 33, Issue 8–9, pp 1661–1673 | Cite as

Application of Time-Domain Reflectometry for Measurement of Moisture Profiles in a Drying Experiment

  • Z. Pavlík
  • J. Mihulka
  • L. Fiala
  • R. Černý


The time-domain reflectometry (TDR) method is used for the measurement of moisture profiles in calcium silicate during a drying experiment. The specimens are saturated at first by water, and their lateral sides and one of the face sides are water- and vapor-proof insulated to ensure one-dimensional (1-D) water transport. Then, the drying process is started in an environment with a relative humidity of 20%. Moisture profiles are measured at specified time intervals using the TDR method. The experiment is stopped when the moisture content along the whole length of the sample is lower than the maximum hygroscopic moisture content. The obtained results can be used for the determination of moisture diffusivity in the drying phase of moisture transport.


Calcium silicate Drying experiment Moisture content TDR method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roels S.: Modelling Unsaturated Moisture Transport in Heterogeneous Limestone. Katholieke Universiteit Leuven, Belgium (2000)Google Scholar
  2. 2.
    Fog Nielsen K.: Mould Growth on Building Materials, Secondary Metabolits, Mycotoxines and Biomarkers. The Mycology group, Biocentrum—DTU, Technical Univesity Denmark, Lyngby (2002)Google Scholar
  3. 3.
    Bornehag C.G., Blomquist F., Gyntelberg F., Jaervholm B., Malmberg P., Nordwall L., Nielsen A., Pershagen G., Sundell J.: Indoor Air 11, 72 (2001)CrossRefGoogle Scholar
  4. 4.
    Morel J.C., Pkla A., Walker P.: Constr. Build. Mater. 21, 303 (2007)CrossRefGoogle Scholar
  5. 5.
    Tesárek P., Drchalová J., Kolísko J., Rovnaníková P., Černý R.: Constr. Build. Mater. 21, 1500 (2007)CrossRefGoogle Scholar
  6. 6.
    Jiřičková M., Pavlík Z., Fiala L., Černý R.: Int. J. Thermophys. 27, 1214 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Pavlík Z.: Methods for Determination of Moisture Content of Porous Building Materials. CTU, Prague (2010)Google Scholar
  8. 8.
    Černý R., Rovnaníková P.: Transport Processes in Concrete, 1st edn. Spon Press, London (2002)Google Scholar
  9. 9.
    Pavlík Z.: Identification of Parameters Describing the Coupled Moisture and Salt Transport in Porous Building Materials. CTU, Prague (2009)Google Scholar
  10. 10.
    Černý R., Kunca A., Tydlitát V., Drchalová J., Rovnaníková P.: Constr. Build. Mater. 20, 849 (2006)CrossRefGoogle Scholar
  11. 11.
    Zuda L., Drchalová J., Rovnaník P., Bayer P., Keršner Z., Černý R.: Cem. Concr. Compos. 32, 157 (2010)CrossRefGoogle Scholar
  12. 12.
    Yardim B., Tuncoku S.S.: Int. J. Archit. Heritage 3, 1 (2009)CrossRefGoogle Scholar
  13. 13.
    A. Seppanen, K. Karhunen, A. Lehikoinen, J.P. Kaipio, P.J.M. Monteiro, in Proceedings of the 2nd International Conference on Concrete Repair, Rehabilitation and Retrofitting (University of Cape Town, Cape Town, 2009), pp. 231–232Google Scholar
  14. 14.
    A. Fuchs, M.J. Moser, H. Zangl, in Proceedings of the 3rd International Conference on Sensing Technology (National Cheng Kung University, Tainan, 2008), pp. 661–665Google Scholar
  15. 15.
    Li X.G., Xu M.Y.: Meas. Control 42, 84 (2009)ADSGoogle Scholar
  16. 16.
    Z. Pavlík, J. Mihulka, in Proceedings of the 2nd Conference on Experimental and Computational Method for Directed Design and Assessment of Functional Properties of Building Materials in honour of the 50th birthday of R. Černý, vol. 1 (CTU, Prague, 2008), pp. 145–150Google Scholar
  17. 17.
    Z. Pavlík, J. Mihulka, M. Pavlíková, R. Černý, in Proceedings of the Fourteenth International Conference on Computational Methods and Experimental Measurements, Algarve, Portugal (WIT PRESS, Wessex, 2009), pp. 157–167Google Scholar
  18. 18.
    R. Plagge, J. Grunewald, in Proceedings of ISEMA 2005 (MFPA Weimar, Weimar, 2005), pp. 294–301Google Scholar
  19. 19.
    Jiřičková M.: Application of TDR Microprobes, Minitensiometry and Minihygrometry to the Determination of Moisture Transport and Moisture Storage Parameters of Building Materials. CTU, Prague (2004)Google Scholar
  20. 20.
    Malicki M.A., Skierucha W.: Irrig. Sci. 10, 153 (1989)Google Scholar
  21. 21.
    Topp G.C., Davis J.L., Annan A.P.: Water Resour. Res. 16, 574 (1980)ADSCrossRefGoogle Scholar
  22. 22.
    Malicki M.A., Plagge R., Roth C.H.: Eur. J. Soil Sci. 47, 357 (1996)CrossRefGoogle Scholar
  23. 23.
    Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Černý R., Pavlík Z., Hall C., Kumaran K., Pel L., Plagge R.: J. Therm. Envel. Build. Sci. 27, 307 (2004)Google Scholar
  24. 24.
    Rayleigh Lord: Philos. Mag. 34, 481 (1892)MATHCrossRefGoogle Scholar
  25. 25.
    Wiener O.: Abhandlungen der Mathematischen-Physischen Klasse der Königlichen Sächsischen Gesellschaft der Wissenschaften 32, 509 (1912)Google Scholar
  26. 26.
    Hashin Z., Shtrikman S.: J. Appl. Phys. 33, 3125 (1962)ADSMATHCrossRefGoogle Scholar
  27. 27.
    Černý R.: Measurement 42, 329 (2009)CrossRefGoogle Scholar
  28. 28.
    Lichtenecker K.: Phys. Z. 27, 115 (1926)MATHGoogle Scholar
  29. 29.
    De Loor G.P.: J. Microw. Power 3, 67 (1968)Google Scholar
  30. 30.
    Pavlík Z., Fiala L., Černý R.: Pollack Periodica 4, 79 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations