International Journal of Thermophysics

, Volume 33, Issue 8–9, pp 1704–1714 | Cite as

Determination of Moisture Diffusivity as a Function of Both Moisture and Temperature

  • Z. Pavlík
  • R. Černý


The effect of moisture and temperature on liquid water transport in porous media was studied. Specimens of autoclaved aerated concrete were subjected to one-sided water penetration in isothermal conditions at temperatures of 20 °C, 40 °C, 60 °C, and 80 °C. After specified time intervals, moisture profiles were determined gravimetrically. The moisture diffusivity was calculated for a particular temperature as a function of moisture content, using an inverse analysis. The results demonstrate the dependence of the moisture diffusivity on the moisture content and the temperature of the samples. The moisture diffusivity for high moisture content can be as much as one order of magnitude greater than for the lowest moisture content studied. The moisture diffusivity was found to increase by as much as a factor of two when the temperature is increased from 20 °C to 80 °C.


Autoclaved aerated concrete Inverse analysis Moisture Moisture diffusivity Temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hall C., Tse K.M.: Build. Environ. 21, 101 (1986)CrossRefGoogle Scholar
  2. 2.
    Hall C.: Mag. Concr. Res. 41, 51 (1989)CrossRefGoogle Scholar
  3. 3.
    Vejmelková E., Pavlíková M., Jerman M., Černý R.: J. Build. Phys. 33, 29 (2009)CrossRefGoogle Scholar
  4. 4.
    Mňahončáková E., Vejmelka R., Jiřičková M., Rovnaníková P., Bayer P., Černý R.: J. Build. Phys. 29, 121 (2005)CrossRefGoogle Scholar
  5. 5.
    M. Jiřičková, P. Tesárek, R. Černý, in Proceedings of the 5th International Symposium on Humidity and Moisture (Inmetro, Rio de Janeiro, 2006)Google Scholar
  6. 6.
    M. Pavlíková, Z. Pavlík, R. Černý, in Concrete Durability: Achievement and Enhancement (IHS BRE Press, Bracknell, 2008), pp. 669–680Google Scholar
  7. 7.
    Černý R., Rovnaníková P.: Transport Processes in Concrete. Spon Press, London (2002)Google Scholar
  8. 8.
    Hens H.: Building Physics—Heat, Air and Moisture, Fundamentals and Engineering Methods with Examples and Exercises. Ernst & Sohn, Berlin (2007)Google Scholar
  9. 9.
    Kumaran M.K., Therm J.: Envel. Build. Sci. 22, 121 (1999)Google Scholar
  10. 10.
    Tesárek P., Drchalová J., Kolísko J., Rovnaníková P., Černý R.: Constr. Build. Mater. 21, 1500 (2007)CrossRefGoogle Scholar
  11. 11.
    Zuda L., Drchalová J., Rovnaník P., Bayer P., Keršner Z., Černý R.: Cem. Concr. Compos. 32, 157 (2010)CrossRefGoogle Scholar
  12. 12.
    Hall C., Hoff W.D.: Water Transport in Brick, Stone and Concrete. Spon Press, London (2002)CrossRefGoogle Scholar
  13. 13.
    Černý R.: Second-Order Effects on Moisture Transport in Porous Materials. CTU, Prague (1994)Google Scholar
  14. 14.
    Krischer O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik. Springer-Verlag, Berlin (1963)Google Scholar
  15. 15.
    Černý R., Venzmer H.: Gesundheitsingenieur 109, 65 (1988)Google Scholar
  16. 16.
    Černý R.: Gesundheitsingenieur 110, 222 (1989)Google Scholar
  17. 17.
    Zacharias B., Černý R., Venzmer H.: Bauphysik 12, 133 (1990)Google Scholar
  18. 18.
    Zacharias B., Černý R.: Wiss. Z. TH Wismar 2, 50 (1990)Google Scholar
  19. 19.
    Černý R., Zacharias B.: Gesundheitsingenieur 114, 199 (1993)Google Scholar
  20. 20.
    Jiřičková M.: Application of TDR Microprobes, Minitensiometry and Minihygrometry to the Determination of Moisture Transport and Moisture Storage Parameters of Building Materials. CTU, Prague (2004)Google Scholar
  21. 21.
    Matano C.: Jpn. J. Phys. 8, 109 (1933)Google Scholar
  22. 22.
    R. Černý, J. Drchalová, Š. Hošková, J. Toman, in Proceedings of Second ECCOMAS Conf. on Numerical Methods in Engineering (Wiley, Chichester, 1996), pp. 664–670Google Scholar
  23. 23.
    Ioannou I., Hamilton A., Hall C.: Cem. Concr. Res. 38, 766 (2008)CrossRefGoogle Scholar
  24. 24.
    Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Černý R., Pavlík Z., Ellis A.T., Hall C., Kumaran K., Pel L., Plagge R.: J. Therm. Envel. Build. Sci. 27, 261 (2004)Google Scholar
  25. 25.
    Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Černý R., Pavlík Z., Hall C., Kumaran K., Pel L., Plagge R.: J. Therm. Envel. Build. Sci. 27, 307 (2004)Google Scholar
  26. 26.
    Janz M.: Mater. Struct. 35, 141 (2002)CrossRefGoogle Scholar
  27. 27.
    Qiu X., Haghighat F., Kumaran M.K.: J. Therm. Envel. Build. Sci. 26, 213 (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical University in PraguePrague 6Czech Republic

Personalised recommendations