Skip to main content
Log in

Determination of Moisture Diffusivity as a Function of Both Moisture and Temperature

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The effect of moisture and temperature on liquid water transport in porous media was studied. Specimens of autoclaved aerated concrete were subjected to one-sided water penetration in isothermal conditions at temperatures of 20 °C, 40 °C, 60 °C, and 80 °C. After specified time intervals, moisture profiles were determined gravimetrically. The moisture diffusivity was calculated for a particular temperature as a function of moisture content, using an inverse analysis. The results demonstrate the dependence of the moisture diffusivity on the moisture content and the temperature of the samples. The moisture diffusivity for high moisture content can be as much as one order of magnitude greater than for the lowest moisture content studied. The moisture diffusivity was found to increase by as much as a factor of two when the temperature is increased from 20 °C to 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hall C., Tse K.M.: Build. Environ. 21, 101 (1986)

    Article  Google Scholar 

  2. Hall C.: Mag. Concr. Res. 41, 51 (1989)

    Article  Google Scholar 

  3. Vejmelková E., Pavlíková M., Jerman M., Černý R.: J. Build. Phys. 33, 29 (2009)

    Article  Google Scholar 

  4. Mňahončáková E., Vejmelka R., Jiřičková M., Rovnaníková P., Bayer P., Černý R.: J. Build. Phys. 29, 121 (2005)

    Article  Google Scholar 

  5. M. Jiřičková, P. Tesárek, R. Černý, in Proceedings of the 5th International Symposium on Humidity and Moisture (Inmetro, Rio de Janeiro, 2006)

  6. M. Pavlíková, Z. Pavlík, R. Černý, in Concrete Durability: Achievement and Enhancement (IHS BRE Press, Bracknell, 2008), pp. 669–680

  7. Černý R., Rovnaníková P.: Transport Processes in Concrete. Spon Press, London (2002)

    Google Scholar 

  8. Hens H.: Building Physics—Heat, Air and Moisture, Fundamentals and Engineering Methods with Examples and Exercises. Ernst & Sohn, Berlin (2007)

    Google Scholar 

  9. Kumaran M.K., Therm J.: Envel. Build. Sci. 22, 121 (1999)

    Google Scholar 

  10. Tesárek P., Drchalová J., Kolísko J., Rovnaníková P., Černý R.: Constr. Build. Mater. 21, 1500 (2007)

    Article  Google Scholar 

  11. Zuda L., Drchalová J., Rovnaník P., Bayer P., Keršner Z., Černý R.: Cem. Concr. Compos. 32, 157 (2010)

    Article  Google Scholar 

  12. Hall C., Hoff W.D.: Water Transport in Brick, Stone and Concrete. Spon Press, London (2002)

    Book  Google Scholar 

  13. Černý R.: Second-Order Effects on Moisture Transport in Porous Materials. CTU, Prague (1994)

    Google Scholar 

  14. Krischer O.: Die wissenschaftlichen Grundlagen der Trocknungstechnik. Springer-Verlag, Berlin (1963)

    Google Scholar 

  15. Černý R., Venzmer H.: Gesundheitsingenieur 109, 65 (1988)

    Google Scholar 

  16. Černý R.: Gesundheitsingenieur 110, 222 (1989)

    Google Scholar 

  17. Zacharias B., Černý R., Venzmer H.: Bauphysik 12, 133 (1990)

    Google Scholar 

  18. Zacharias B., Černý R.: Wiss. Z. TH Wismar 2, 50 (1990)

    Google Scholar 

  19. Černý R., Zacharias B.: Gesundheitsingenieur 114, 199 (1993)

    Google Scholar 

  20. Jiřičková M.: Application of TDR Microprobes, Minitensiometry and Minihygrometry to the Determination of Moisture Transport and Moisture Storage Parameters of Building Materials. CTU, Prague (2004)

    Google Scholar 

  21. Matano C.: Jpn. J. Phys. 8, 109 (1933)

    Google Scholar 

  22. R. Černý, J. Drchalová, Š. Hošková, J. Toman, in Proceedings of Second ECCOMAS Conf. on Numerical Methods in Engineering (Wiley, Chichester, 1996), pp. 664–670

  23. Ioannou I., Hamilton A., Hall C.: Cem. Concr. Res. 38, 766 (2008)

    Article  Google Scholar 

  24. Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Černý R., Pavlík Z., Ellis A.T., Hall C., Kumaran K., Pel L., Plagge R.: J. Therm. Envel. Build. Sci. 27, 261 (2004)

    Google Scholar 

  25. Roels S., Carmeliet J., Hens H., Adan O., Brocken H., Černý R., Pavlík Z., Hall C., Kumaran K., Pel L., Plagge R.: J. Therm. Envel. Build. Sci. 27, 307 (2004)

    Google Scholar 

  26. Janz M.: Mater. Struct. 35, 141 (2002)

    Article  Google Scholar 

  27. Qiu X., Haghighat F., Kumaran M.K.: J. Therm. Envel. Build. Sci. 26, 213 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Černý.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pavlík, Z., Černý, R. Determination of Moisture Diffusivity as a Function of Both Moisture and Temperature. Int J Thermophys 33, 1704–1714 (2012). https://doi.org/10.1007/s10765-011-1006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-1006-y

Keywords

Navigation