International Journal of Thermophysics

, Volume 34, Issue 12, pp 2361–2370 | Cite as

Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

  • Yuan-Wei Li
  • Bing-Yang Cao


The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.


Internal heat source Phonon dynamics Single-walled carbon nanotubes Thermal conductivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Iijima S.: Nature 354, 56 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    Baughman R.H., Zakhidov A.A., de Heer W.A.: Science 297, 787 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    Kim P., Shi L., Majumdar A., McEuen P.L.: Phys. Rev. Lett. 87, 215502 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Fujii M., Zhang X., Xie H.Q., Ago H., Takahashi K., Ikuta T.: Phys. Rev. Lett. 95, 065502 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Yu C., Shi L., Yao Z., Li D.Y., Majumdar A.: Nanotechnol. Lett. 5, 1842 (2005)ADSGoogle Scholar
  6. 6.
    Pop E., Mann D., Wang Q., Goodson K., Dai H.J.: Nanotechnol. Lett. 6, 96 (2006)ADSGoogle Scholar
  7. 7.
    Cao J.X., Yan X.H., Xiao Y., Ding J.W.: Phys. Rev. B 69, 073407 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Mingo N., Broido D.A.: Nanotechnol. Lett. 5, 1221 (2005)ADSGoogle Scholar
  9. 9.
    Berber S., Kwon Y.K., Tomanek D.: Phys. Rev. Lett. 84, 4613 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Li B.W., Wang J., Wang L., Zhang G.: Chaos 15, 015121 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    Bi K.D., Chen Y.F., Yang J.K., Wang Y.J., Chen M.H.: Phys. Lett. A 350, 150 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Q.W. Hou, B.Y. Cao, Z.Y. Guo, Acta Phys. Sin. 58, 7809 (2009) (in Chinese)Google Scholar
  13. 13.
    Cao B.Y., Li Y.W.: J. Chem. Phys. 133, 024106 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Brenner D.W.: Phys. Rev. B 42, 9458 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford University, New York (1989)Google Scholar
  16. 16.
    Hoover W.G.: Phys. Rev. A 31, 1695 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    Müller-Plathe F.: J. Chem. Phys. 106, 6082 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Jiang J.W., Chen J., Wang J.S., Li B.W.: Phys. Rev. B 80, 052301 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Peierls R.E.: Quantum Theory of Solids. Oxford University, New York (1955)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering MechanicsTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations