Skip to main content
Log in

Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of (5, 5) single-walled carbon nanotubes (SWNTs) with an internal heat source is investigated by using nonequilibrium molecular dynamics (NEMD) simulation incorporating uniform heat source and heat source-and-sink schemes. Compared with SWNTs without an internal heat source, i.e., by a fixed-temperature difference scheme, the thermal conductivity of SWNTs with an internal heat source is much lower, by as much as half in some cases, though it still increases with an increase of the tube length. Based on the theory of phonon dynamics, a function called the phonon free path distribution is defined to develop a simple one-dimensional heat conduction model considering an internal heat source, which can explain diffusive-ballistic heat transport in carbon nanotubes well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. Baughman R.H., Zakhidov A.A., de Heer W.A.: Science 297, 787 (2002)

    Article  ADS  Google Scholar 

  3. Kim P., Shi L., Majumdar A., McEuen P.L.: Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  4. Fujii M., Zhang X., Xie H.Q., Ago H., Takahashi K., Ikuta T.: Phys. Rev. Lett. 95, 065502 (2005)

    Article  ADS  Google Scholar 

  5. Yu C., Shi L., Yao Z., Li D.Y., Majumdar A.: Nanotechnol. Lett. 5, 1842 (2005)

    ADS  Google Scholar 

  6. Pop E., Mann D., Wang Q., Goodson K., Dai H.J.: Nanotechnol. Lett. 6, 96 (2006)

    ADS  Google Scholar 

  7. Cao J.X., Yan X.H., Xiao Y., Ding J.W.: Phys. Rev. B 69, 073407 (2004)

    Article  ADS  Google Scholar 

  8. Mingo N., Broido D.A.: Nanotechnol. Lett. 5, 1221 (2005)

    ADS  Google Scholar 

  9. Berber S., Kwon Y.K., Tomanek D.: Phys. Rev. Lett. 84, 4613 (2000)

    Article  ADS  Google Scholar 

  10. Li B.W., Wang J., Wang L., Zhang G.: Chaos 15, 015121 (2005)

    Article  ADS  Google Scholar 

  11. Bi K.D., Chen Y.F., Yang J.K., Wang Y.J., Chen M.H.: Phys. Lett. A 350, 150 (2005)

    Article  ADS  Google Scholar 

  12. Q.W. Hou, B.Y. Cao, Z.Y. Guo, Acta Phys. Sin. 58, 7809 (2009) (in Chinese)

    Google Scholar 

  13. Cao B.Y., Li Y.W.: J. Chem. Phys. 133, 024106 (2010)

    Article  ADS  Google Scholar 

  14. Brenner D.W.: Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  15. Allen M.P., Tildesley D.J.: Computer Simulation of Liquids. Oxford University, New York (1989)

    Google Scholar 

  16. Hoover W.G.: Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  17. Müller-Plathe F.: J. Chem. Phys. 106, 6082 (1997)

    Article  ADS  Google Scholar 

  18. Jiang J.W., Chen J., Wang J.S., Li B.W.: Phys. Rev. B 80, 052301 (2009)

    Article  ADS  Google Scholar 

  19. Peierls R.E.: Quantum Theory of Solids. Oxford University, New York (1955)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Yang Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, YW., Cao, BY. Thermal Conductivity of Single-Walled Carbon Nanotube with Internal Heat Source Studied by Molecular Dynamics Simulation. Int J Thermophys 34, 2361–2370 (2013). https://doi.org/10.1007/s10765-011-1004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-1004-0

Keywords

Navigation