Advertisement

International Journal of Thermophysics

, Volume 34, Issue 12, pp 2243–2260 | Cite as

A New Surface Tension Equation for Refrigerants

  • Giovanni Di Nicola
  • Cristiano Di Nicola
  • Matteo Moglie
Article

Abstract

This study presents a new formula for the surface tension prediction of refrigerants. As a first step, an analysis of the available experimental surface tension data for refrigerants was performed. The experimental data were collected, after a careful literature survey, for the following pure fluids: R11, R12, R13, R13B1, R14, R21, R22, R23, R32, R113, R114, R115, R123, R124, R125, R134, R134a, R141b, R143a, R152a, R218, R227ea, R236ea, R236fa, R245ca, R245fa, R365mfc, and R1234yf. Then, the experimental data were regressed with the most reliable semi-empirical correlating methods based on the corresponding-states theory existing in the literature. As a final step, to minimize the deviation between the predicted data and the experimental data and to find the optimal equation for experimental data regression, a (μ + λ)-evolution strategy was adopted. After a careful statistical analysis of the results, a new formula based on the corresponding-states principle with improved representation of the experimental results was found and proposed.

Keywords

Critical pressure Critical temperature Refrigerant Surface tension Survey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jasper J.J.: J. Phys. Chem. Ref. Data 1, 841 (1972)ADSCrossRefGoogle Scholar
  2. 2.
    Vargaftik N.: Tables of the Thermophysical Properties of Liquids and Gases. Wiley, New York (1975)Google Scholar
  3. 3.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), Version 8.0 (2007)Google Scholar
  4. 4.
    Hongo M., Kusunoki M., Matsuyama H., Takagi T., Mishima K., Arai Y.: J. Chem. Eng. Data 35, 4414 (1990)CrossRefGoogle Scholar
  5. 5.
    Poling B.E., Prausnitz J.M., O’Connell J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2000)Google Scholar
  6. 6.
    Higashi Y., Shibata T., Okada M.: J. Chem. Eng. Data 42, 438 (1997)CrossRefGoogle Scholar
  7. 7.
    W. Rathjen, J. Straub, in Proceedings of VII Symposium of Thermophysical Properties (ASME, New York, 1977), pp. 839–850Google Scholar
  8. 8.
    Dorokhov A., Kiriyanenko A., Solov’ev A.: Zh. Prikl. Mekh. Tekh. Fiz. 93, 1 (1969)Google Scholar
  9. 9.
    Heide R.: Luft-Kalte Tech 9, 125 (1973)Google Scholar
  10. 10.
    K. Watanabe, M. Okada, in Proceedings of VII Symposium of Thermophysical Properties (ASME, New York, 1977), pp. 851–863Google Scholar
  11. 11.
    M. Okada, T. Umayahara, M. Hattori, K. Watanabe, in IIR Commission B1 (Herzlia, Israel, 1990), pp. 77–82Google Scholar
  12. 12.
    Soares V., Almeida B.D.J., McLure I., Higgins R.: Fluid Phase Equilib. 32, 9 (1986)CrossRefGoogle Scholar
  13. 13.
    Okada M., Arima T., Hattori M., Watanabe K.: J. Chem. Eng. Data 33, 399 (1988)CrossRefGoogle Scholar
  14. 14.
    Froba A., Will S., Leipertz A.: Int. J. Thermophys. 21, 1225 (2000)CrossRefGoogle Scholar
  15. 15.
    Heide R.: Int. J. Refrig. 20, 496 (1997)CrossRefGoogle Scholar
  16. 16.
    Okada M., Higashi Y.: Int. J. Thermophys. 16, 791 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    Zhu M.S., Lu C.X.: J. Chem. Eng. Data 39, 205 (1994)CrossRefGoogle Scholar
  18. 18.
    Schmidt J.W., Moldover M.R.: J. Chem. Eng. Data 39, 39 (1994)CrossRefGoogle Scholar
  19. 19.
    Chae H.B., Schmidt J.W., Moldover M.R.: J. Chem. Eng. Data 35, 6 (1990)CrossRefGoogle Scholar
  20. 20.
    Chae H.B., Schmidt J.W., Moldover M.R.: J. Phys. Chem. 94, 8840 (1990)CrossRefGoogle Scholar
  21. 21.
    Higashi Y., Ikeda T., Kuwana T., Okada M.: Trans. JAR 9, 191 (1992)Google Scholar
  22. 22.
    Schmidt J.W., Carrillo-Nava E., Moldover M.R.: Fluid Phase Equilib. 122, 187 (1996)CrossRefGoogle Scholar
  23. 23.
    Duan Y.Y., Shi L., Zhu M.S., Han L.Z., Lei X.: Fluid Phase Equilib. 172, 237 (2000)CrossRefGoogle Scholar
  24. 24.
    Liu M.F., Han L.Z., Zhu M.S.: Int. J. Thermophys. 15, 941 (1994)ADSCrossRefGoogle Scholar
  25. 25.
    Zhu M.S., Han L.Z., Lu C.X.: Fluid Phase Equilib. 86, 363 (1993)CrossRefGoogle Scholar
  26. 26.
    Lin H., Duan Y.Y.: Int. J. Thermophys. 24, 1495 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    McLure I.A., Soares V.A.M., Edmonds B.: J. Chem. Soc. Faraday Trans. 1 78, 2251 (1982)CrossRefGoogle Scholar
  28. 28.
    Lin H., Duan Y.Y., Wang Z.W.: Fluid Phase Equilib. 214, 79 (2003)CrossRefGoogle Scholar
  29. 29.
    Defibaugh D.R., Gillis K.A., Moldover M.R., Schmidt J.W., Weber L.A.: Int. J. Refrig. 19, 285 (1996)CrossRefGoogle Scholar
  30. 30.
    Tanaka K., Higashi Y.: Int. J. Refrig. 33, 474 (2010)CrossRefGoogle Scholar
  31. 31.
    Froba A.P., Krzeminski K., Leipertz A.: Int. J. Thermophys. 25, 987 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    Van der Waals J.D.: Z. Phys. Chem. 13, 716 (1894)Google Scholar
  33. 33.
    Brock J.R., Bird R.B.: A.I.Ch. E. J 1, 174 (1955)CrossRefGoogle Scholar
  34. 34.
    Miller D.G.: Ind. Eng. Chem. Fundam. 2, 78 (1963)CrossRefGoogle Scholar
  35. 35.
    Pitzer K.: Thermodynamics, 3rd edn. McGraw-Hill, New York (1995)Google Scholar
  36. 36.
    Sastri S.R.S., Rao K.K.: Chem. Eng. J. 59, 181 (1995)Google Scholar
  37. 37.
    Miqueu C., Broseta D., Satherley J., Mendiboure B., Lachaise J., Graciaa A.: Fluid Phase Equilib. 172, 169 (2000)CrossRefGoogle Scholar
  38. 38.
    Schwefel H.P.: Evolution and Optimum Seeking. Wiley-Interscience, New York (1995)Google Scholar
  39. 39.
    Beyer H.G., Schwefel H.P.: Nat. Comput. 1, 3 (2002)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Giovanni Di Nicola
    • 1
  • Cristiano Di Nicola
    • 1
  • Matteo Moglie
    • 1
  1. 1.Dipartimento di EnergeticaUniversità Politecnica delle MarcheAnconaItaly

Personalised recommendations