Experimental Reconstruction of Thermal Parameters in CNT Array Multilayer Structure



The thermal conductivities, thermal diffusivity, thermal anisotropy ratio, and thermal boundary resistance for the multilayered microstructure of a carbon nanotube (CNT) array are reconstructed experimentally using the 3ω method with two different width metal heaters. The thermal impedance in the frequency domain and sensitivity coefficients are introduced to simultaneously determine the multiple thermal parameters. The thermal conductivity at 295 K is 38 W · m−1 · K−1 along the nanotube growth direction, and two orders of magnitude lower in the direction perpendicular to the tubes with the anisotropy ratio as large as 86. Separation of the contact and CNT array resistances is realized through circuit modeling. The measured thermal boundary resistances of the CNT array/Si substrate and insulating diamond film interfaces are 3.1 m2 · K · MW−1 and 18.4 m2 · K · MW−1, respectively. The measured thermal boundary resistance between the heater and diamond film is 0.085 m2 · K · MW−1 using a reference sample without a CNT array. The thermal conductivity for a CNT array already exceeds those of phase-changing thermal interface materials used in microelectronics.


3ω Method Carbon nanotube array Thermal boundary resistance Thermal conductivity Thermal impedance 


  1. 1.
    Berber S., Kwon Y.K., Tomanek D.: Phys. Rev. Lett. 84, 4613 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Che J.W., Cagin T., Goddard W.A.: Nanotechnology 11, 65 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    Kim P., Shi L., Majumdar A., McEuen P.L.: Phys. Rev. Lett. 87, 215502 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    Swartz E.T., Pohl R.O.: Rev. Mod. Phys. 61, 605 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    Cola B.A., Xu J., Fisher T.S.: Int. J. Heat Mass Transf. 52, 3490 (2009)CrossRefGoogle Scholar
  6. 6.
    Xu J., Fisher T.S.: IEEE Trans. Compon. Packag. Technol. 29, 261 (2006)CrossRefGoogle Scholar
  7. 7.
    Tong T., Zhao Y., Delzeit L., Kashani A., Meyyappan M., Majumdar A.: IEEE Trans. Compon. Packag. Technol. 30, 92 (2007)CrossRefGoogle Scholar
  8. 8.
    Amama P.B., Cola B.A., Sands T.D., Xu X., Fisher T.S.: Nanotechnology 18, 385303 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    Cola B.A., Amama P.B., Xu X., Fisher T.S.: ASME J. Heat Transf. 130, 114503 (2008)CrossRefGoogle Scholar
  10. 10.
    Cola B.A., Xu J., Cheng C., Xu X., Hu H., Fisher T.S.: J. Appl. Phys. 101, 054313 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    Hu X.J., Padilla A.A., Xu J., Fisher T.S., Goodson K.E.: ASME J. Heat Transf. 128, 1109 (2006)CrossRefGoogle Scholar
  12. 12.
    Borca-Tasciuc T., Kumar A.R., Chen G.: Rev. Sci. Instrum. 72, 2139 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    Olson B.W., Graham S., Chen K.: Rev. Sci. Instrum. 76, 053901 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    Cahill D.G.: Rev. Sci. Instrum. 61, 802 (1990)ADSCrossRefGoogle Scholar
  15. 15.
    Yamane T., Nagai N., Katayama S., Todoki M.: J. Appl. Phys. 91, 9772 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    Jakubinek M.B., White M.A., Li G., Jayasinghe C., Cho W., Shulz M.J., Shanov V.: Carbon 48, 3947 (2010)CrossRefGoogle Scholar
  17. 17.
    Kim P., Shi L., Majumdar A., McEuen P.L.: Phys. Rev. Lett. 87, 215502 (2001)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Thermal Engineering and Power DepartmentChina University of Petroleum (East China)TsingtaoChina
  2. 2.Institute of Engineering ThermophysicsChinese Academy of ScienceBeijingChina

Personalised recommendations