International Journal of Thermophysics

, Volume 31, Issue 11–12, pp 2305–2322 | Cite as

Determination of the Effusivity of Different Scratched Coaxial Temperature Sensors Under Hypersonic Flow

  • H. A. Mohammed
  • H. Salleh
  • M. Z. Yusoff


This paper presents an experimental method for determining the effusivity values of different scratched coaxial temperature sensors. These sensors have a response time on the order of microseconds (50 μs) with a rise time of less than 0.3 μs. Two types of scratch were used, mainly abrasive papers with different grit sizes and scalpel blades with different thicknesses to form the sensor junctions. The effect of the scratch technique on the sensor’s effusivity is also investigated. The sensors were tested and calibrated in the test section of a shock-tube facility at different operating conditions. It was observed that the effusivity of a particular sensor depends on the Mach number, scratch technique, scratch direction, junction location, as well as on the enthalpy condition. It was also noticed that a scratched sensor using the scalpel blade technique does not require an individual calibration. However, for a sensor scratched using the abrasive paper technique, a calibration for each sensor is likely to be required. The present results have provided useful and practical data of the effusivity values for different scratched temperature sensors. These data are beneficial to experimentalists in the field, and can be used for accurate transient heat transfer rate measurements.


Coaxial temperature sensors Effusivity Scratched technique Shock tube Transient heat flux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alkidas A.C.: J. Heat Transf. Trans. ASME 102, 189 (1980)CrossRefGoogle Scholar
  2. 2.
    Alkidas A.C., Cole R.M.: J. Heat Transf. Trans. ASME 107, 439 (1985)CrossRefGoogle Scholar
  3. 3.
    Alkidas A.C., Puzinauskas P.V., Peterson R.C.: SAE Trans. J. Engines 99, 817 (1990)Google Scholar
  4. 4.
    Gatowski J.A., Smith M.K., Alkidas A.C.: Exp. Therm. Fluid Sci. 2, 280 (1989)CrossRefGoogle Scholar
  5. 5.
    Lawton B.: J. Power Energy 201, 175 (1987)Google Scholar
  6. 6.
    Oude Nijeweme D.J., Kok J.B.W., Stone C.R., Wyszynski L.: J. Automob. Eng. 215, 747 (2001)CrossRefGoogle Scholar
  7. 7.
    Jessen C., Vetter M., Gronig H.: Z. Flugwiss Weltraumforsch 17, 73 (1993)Google Scholar
  8. 8.
    Gai S.L., Joe W.S.: J. Thermophys. Heat Transf. 6, 433 (1992)CrossRefGoogle Scholar
  9. 9.
    Sanderson S.R., Sturtevant B.: Rev. Sci. Instrum. 73, 2781 (2002)CrossRefADSGoogle Scholar
  10. 10.
    Lawton B., Klingenberg G.: Transient Temperature in Engineering and Science. Oxford University Press, Oxford (1996)Google Scholar
  11. 11.
    Chen J.C., Hsu K.K.: J. Heat Transf. Trans. ASME 117, 693 (1995)CrossRefGoogle Scholar
  12. 12.
    Lee L., Chen J.C., Nelson R.A.: Rev. Sci. Instrum. 53, 1472 (1982)CrossRefADSGoogle Scholar
  13. 13.
    Lee L.Y.W., Chen J.C., Nelson R.A.: J. Heat Mass Transf. 28, 1415 (1985)CrossRefGoogle Scholar
  14. 14.
    Bendersky D.: Mech. Eng. 75, 117 (1953)Google Scholar
  15. 15.
    Kovas A., Mesler R.B.: Rev. Sci. Instrum. 35, 485 (1964)CrossRefADSGoogle Scholar
  16. 16.
    Ongkiehong L., Van Dujin J.: J. Sci. Instrum. 37, 221 (1960)CrossRefADSGoogle Scholar
  17. 17.
    NANMAC, Temperature Measurement Handbook, vol. VIII (Nanmac Co. Publication, Framingham, MA, 1997)Google Scholar
  18. 18.
    Mohammed H., Salleh H., Yusoff M.Z.: Int. Commun. Heat Mass Transf. 35, 853 (2008)CrossRefGoogle Scholar
  19. 19.
    Kinzie P.A.: Thermocouple Temperature Measurement. Wiley, New York (1973)Google Scholar
  20. 20.
    Raznjevic K.: Handbook of Thermodynamics Tables and Charts. McGraw Hill, New York (1976)Google Scholar
  21. 21.
    Mohammed H., Salleh H., Yusoff M.Z.: Therm. Sci. 11, 49 (2007)CrossRefGoogle Scholar
  22. 22.
    Buttsworth D.R.: Exp. Therm. Fluid Sci. 25, 409 (2001)CrossRefGoogle Scholar
  23. 23.
    Heichal Y., Chandra S., Bordatchev E.: Exp. Therm. Fluid Sci. 30, 153 (2005)CrossRefGoogle Scholar
  24. 24.
    Sprinks T.: AIAA J. 1, 464 (1963)CrossRefADSGoogle Scholar
  25. 25.
    Lyons P.R.A., Gai S.L.: J. Phys. E: Sci. Instrum. 21, 445 (1998)CrossRefADSGoogle Scholar
  26. 26.
    F.R. Caldwell, Applied Methods and Instrument; Temperature: Its Measurement and Control in Science and Industry, vol. 3, part 2 (Reinhold, New York, 1962), pp. 81–134Google Scholar
  27. 27.
    Y.S. Touloukian, Thermophysical Properties of Matter; Temperature Sensor RC Data Series, vol. 4 (IFI/Plenum Press, New York, 1970)Google Scholar
  28. 28.
    Y.S. Touloukian, Thermophysical Properties of Matter; Temperature Sensor RC Data Series, vol. 1 (IFI/Plenum Press, New York, 1970)Google Scholar
  29. 29.
    Anderson J.D.: Modern Compressible Flow with Historical Perspective, 3rd edn. McGraw Hill, New York (2004)Google Scholar
  30. 30.
    Zurcow M.J., Hoffman J.D.: Gas Dynamics. Wiley, New York (1976)Google Scholar
  31. 31.
    White F.M.: Viscous Fluid Flow, 2nd edn. McGraw Hill, New York (1991)Google Scholar
  32. 32.
    Vargaftik N.B., Vinogradov Y.K., Yargin V.S.: Handbook of Physical Properties of Liquids and Gases, 3rd edn. Begell House, New York (1996)Google Scholar
  33. 33.
    Coleman H.W., Steele W.G.: AIAA J. 33, 1888 (1995)CrossRefADSGoogle Scholar
  34. 34.
    Baines N.C., Mee D.J., Oldfield M.L.G.: Int. J. Eng. Fluid Mech. 4, 375 (1991)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of EngineeringUniversiti Tenaga NasionalKajangMalaysia

Personalised recommendations