Advertisement

International Journal of Thermophysics

, Volume 31, Issue 8–9, pp 1739–1748 | Cite as

Shell Perturbations of an Acoustic Thermometer Determined from Speed of Sound in Gas Mixtures

  • R. M. Gavioso
  • D. Madonna Ripa
  • C. Guianvarc’h
  • G. Benedetto
  • P. A. Giuliano Albo
  • R. Cuccaro
  • L. Pitre
  • D. Truong
Article

Abstract

With the goal of achieving a better understanding of gas–shell coupling perturbations in the acoustic resonators used at INRiM for the determination of the Boltzmann constant, we measured the variation of their acoustic and microwave resonances induced by changing the composition of a binary He–Ar mixture which filled the cavity at constant temperature and pressure. As a consequence of the progressive dilution of a sample of initially pure He with Ar, the radial acoustic modes of the resonator spanned decreasing frequency intervals, partially overlapping, for several modes. In addition to the expected breathing mode of the shell, the results evidenced the presence of several other shell resonances at lower and higher frequencies, confirming that the elastic response of the assembled resonator significantly differs from that of a simple spherical shell. Experimental results are reported for two resonators which differ in design, dimensions, and constructing material. In spite of their being preliminary and susceptible of significant improvement, these results favor the interpretation of acoustic thermometry measurements with pure gases.

Keywords

Acoustic thermometry Shell coupling Speed of sound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mehl J.B.: J. Acoust. Soc. Am. 78, 782 (1985)CrossRefADSGoogle Scholar
  2. 2.
    Pitre L., Moldover M.R., Tew W.L.: Metrologia 43, 142 (2006)CrossRefADSGoogle Scholar
  3. 3.
    Benedetto G., Gavioso R.M., Spagnolo R., Marcarino P., Merlone A.: Metrologia 41, 74 (2004)CrossRefADSGoogle Scholar
  4. 4.
    Fellmuth B., Gaiser C., Fischer J.: Meas. Sci. Technol. 17, R145 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Moldover M.R.: C.R. Phys. 10, 815 (2009)CrossRefADSGoogle Scholar
  6. 6.
    J.B. Mehl, private communicationGoogle Scholar
  7. 7.
    Gélat P., Joly N., de Podesta M., Sutton G., Underwood R.: J. Phys.: Conf. Ser. 195, 012002 (2009)CrossRefADSGoogle Scholar
  8. 8.
    D. Truong, private communicationGoogle Scholar
  9. 9.
    Moldover M.R., Trusler J.P.M., Edwards T.J., Mehl J.B., Davis R.S.: J. Res. Natl. Inst. Stand. Technol. 93, 85 (1988)Google Scholar
  10. 10.
    Gavioso R.M., Benedetto G., Albo P.A.G., Ripa D.M., Merlone A., Guianvarc’h C., Moro F., Cuccaro R.: Metrologia 47, 387 (2010)CrossRefADSGoogle Scholar
  11. 11.
    Schmidt J.W., Moldover M.R.: Int. J. Thermophys. 24, 375 (2003)CrossRefGoogle Scholar
  12. 12.
    Schmidt J.W., Gavioso R.M., May E.F., Moldover M.R.: Phys. Rev. Lett. 98, 254504 (2007)CrossRefADSGoogle Scholar
  13. 13.
    Tegeler C., Span R., Wagner W.: J. Phys. Chem. Ref. Data 28, 779 (1999)CrossRefADSGoogle Scholar
  14. 14.
    Giacobbe F.W.: J. Acoust. Soc. Am. 96, 3568 (1994)CrossRefADSGoogle Scholar
  15. 15.
    Kohler M.: Ann. Phys. 127, 41 (1949)Google Scholar
  16. 16.
    N.J. Simon, E.S. Drexler, R.P. Reed, Properties of Copper and Copper Alloys at Cryogenic Temperatures, NIST Monograph 177 (U.S. Government Printing Office, Washington, DC, 1992)Google Scholar
  17. 17.
    Chapman S., Cowling T.G.: The Mathematical Theory of Non-Uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • R. M. Gavioso
    • 1
  • D. Madonna Ripa
    • 1
  • C. Guianvarc’h
    • 1
  • G. Benedetto
    • 1
  • P. A. Giuliano Albo
    • 1
  • R. Cuccaro
    • 1
  • L. Pitre
    • 2
  • D. Truong
    • 2
  1. 1.Thermodynamics DivisionIstituto Nazionale di Ricerca MetrologicaTurinItaly
  2. 2.Laboratoire Commun de Métrologie LNE-CNAMLa Plaine-Saint-DenisFrance

Personalised recommendations