International Journal of Thermophysics

, Volume 31, Issue 4–5, pp 805–815 | Cite as

Photothermal Radiometry and Diffuse Reflectance Analysis of Thermally Treated Bones

  • S. Trujillo
  • P. Martínez-Torres
  • P. Quintana
  • Juan Jose Alvarado-Gil


Different fields such as archaeology, biomedicine, forensic science, and pathology involve the analysis of burned bones. In this work, the effects of successive thermal treatments on pig long bones, measured by photothermal radiometry and diffuse reflectance are reported. Measurements were complemented by X-ray diffraction and infrared spectroscopy. Samples were thermally treated for 1 h within the range of 25 °C to 350 °C. The thermal diffusivity and reflectance increase in the low-temperature range, reaching a maximum around 125 °C and decaying at higher temperatures. These results are the consequence of complex modifications occurring in the inorganic and organic bone structure. For lower temperatures dehydration, dehydroxilation, and carbonate loss processes are dominant, followed by collagen denaturing and decompositions, which have an influence on the bone microstructure.


Diffuse reflectance FTIR Heated bones Photothermal radiometry Thermal diffusivity X-ray diffraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fleet M.E.: Biomaterials 30, 1473 (2009)CrossRefGoogle Scholar
  2. 2.
    Trueman C.N., Privat K., Field J.: Palaeogeogr. Palaeoclimatol. Palaeoecol. 266, 160 (2008)CrossRefGoogle Scholar
  3. 3.
    Hiller J.C., Wess T.H.: J. Archaoelog. Sci. 33, 560 (2006)CrossRefGoogle Scholar
  4. 4.
    Rogers K.D., Daniels P.: Biomaterials 23, 2577 (2002)CrossRefGoogle Scholar
  5. 5.
    Piga G., Malgosa A., Thompson T.J.U., Enzo S.: J. Archaeolog. Sci 35, 2171 (2008)CrossRefGoogle Scholar
  6. 6.
    Guizzardi S., Montanari C., Migliaccio S., Strocchi R., Solmi R., Martini D., Ruggeri A.: J. Biomed. Mater. Res. B Appl. Biomater. 53, 227 (2000)CrossRefGoogle Scholar
  7. 7.
    Catanese J. III, Featherstone J., Keaveny T.: J. Biomed. Mater. Res. 45, 327 (1999)CrossRefGoogle Scholar
  8. 8.
    Yilbas B., Yilbas Z., Sami M.: Opt. Laser Technol. 28, 513 (1996)CrossRefADSGoogle Scholar
  9. 9.
    Pratisto H., Frenz M., Ith M., Romano V., Felix D., Grossenbacher R., Altermatt H., Weber H.: Lasers Surg. Med. 18, 100 (1996)CrossRefGoogle Scholar
  10. 10.
    Hou C.H., Hou S.M., Hsueh Y.S., Lin J., Wu H.Ch., Lin F.H.: Biomaterials 30, 3956 (2009)CrossRefGoogle Scholar
  11. 11.
    Very J.M., Gilbert R., Guilhot B., Debout M., Alexandre C.: Calcif. Tissue Int. 60, 271 (1997)CrossRefGoogle Scholar
  12. 12.
    Ugryumova N., Matcher S.J., Attenburrow D.P.: Phys. Med. Biol. 49, 469 (2004)CrossRefGoogle Scholar
  13. 13.
    Genina E.A., Bashkatov A.N., Tuchin V.V.: Proc. SPIE 6163, 616311-1 (2007)Google Scholar
  14. 14.
    Heuret M., Bissieux C., Pincon L., Egee P., Kurka G., Danroc J.: Surf. Coat. Technol. 45, 325 (1991)CrossRefGoogle Scholar
  15. 15.
    Heuret M., Schel E.V., Egee M., Danjoux R.: Mater. Sci. Eng. B 5, 119 (1990)CrossRefGoogle Scholar
  16. 16.
    Gijsbertsen A., Bicanic D., Gielen J.L.W., Chirtoc M.: Infrared Phys. Technol. 45, 93 (2004)CrossRefADSGoogle Scholar
  17. 17.
    Wang C., Mandelis A.: NDT & E Int. 40, 158 (2007)CrossRefGoogle Scholar
  18. 18.
    Zharov V.P., Kim J.W., Curiel D.T., Everts M.: Nanomed. Nanotechnol. Biol. Med. 1, 326 (2005)CrossRefGoogle Scholar
  19. 19.
    J.A. Garcia, L. Nicolaides, P. Park, A. Mandelis, B. Farahkbahsh, Anal. Sci. Special Issue 17, s89 (2001)Google Scholar
  20. 20.
    Fonseca E.S.R., de Jesus M.E.P.: Proc. SPIE 6631, 66310C (2007)CrossRefGoogle Scholar
  21. 21.
    Lagorio M.G.: J. Chem. Ed. 81, 1607 (2004)CrossRefGoogle Scholar
  22. 22.
    Dam J.S., Andersen P.E., Dalgaard T., Fabricius P.E.: Appl. Opt. 37, 772 (1998)CrossRefADSGoogle Scholar
  23. 23.
    Perelman L., Backman V., Wallace M., Zonios G., Manoharan R., Nusrat A., Shields S., Seiler M., Lima C., Hamano T., Itzkan I., Dam J.V., Crawford J.M., Field M.S.: Phys. Rev. Lett. 80, 627 (1998)CrossRefADSGoogle Scholar
  24. 24.
    S. Burch, A.J.M. Yee, in Bone Metastasis: Experimental and Clinical Therapeutics, ed. by G. Singh, S.A. Rabbani (Humana Press, Totowa, NJ, 2005), pp. 243–253Google Scholar
  25. 25.
    D. Almond, P. Patel, in Photothermal Science and Techniques, Physics and its Applications, ed. by E.R. Dobbs, S.B. Palmer (Chapman and Hall, London, UK, 1996)Google Scholar
  26. 26.
    A. Mandelis, P. Hess, in Progress in Photothermal and Photoacoustic Science and Technology, vol. III, Life and Earth Sciences (SPIE Optical Eng. Press, Bellingham, Washington, 1997)Google Scholar
  27. 27.
    Salazar A., Sanchez-Lavega A., Terron J.M.: J. Appl. Phys. 84, 3031 (1998)CrossRefADSGoogle Scholar
  28. 28.
    Wheeler E.J., Lewis D.: Calcif. Tissue Res. 24, 243 (1977)CrossRefGoogle Scholar
  29. 29.
    Antonakos A., Liarokapis E., Leventouri T.: Biomaterials 28, 3043 (2007)CrossRefGoogle Scholar
  30. 30.
    He Q.J., Huang Z.L., Cheng X.K., Yu J.: Mater. Lett. 62, 539 (2008)CrossRefGoogle Scholar
  31. 31.
    Chen I.I.H., Saha S.: Ann. Biomed. Eng. 15, 457 (1987)CrossRefGoogle Scholar
  32. 32.
    Coelho T.M., Nogueira E.S., Weinand W.R., Lima W.M., Steimacher A., Medina A.N., Baesso M.L., Bento A.C.: J. Appl. Phys. 101, 084701 (2007)CrossRefADSGoogle Scholar
  33. 33.
    Bento A.C., Almond D.P., Brown S.R., Turner I.G.: J. Appl. Phys. 79, 6848 (1996)CrossRefADSGoogle Scholar
  34. 34.
    Brown W.S., Dewey W.A., Jacobs H.R.: J. Dent. Res. 49, 752 (1970)Google Scholar
  35. 35.
    Braden M.: Arch. Oral Biol. 9, 479 (1964)CrossRefGoogle Scholar
  36. 36.
    El-Brolossy T.A., Abdalla S., Hassanein O.E., Negm S., Talaat H.: J. Phys. IV 125, 685 (2005)CrossRefGoogle Scholar
  37. 37.
    Panas A.J., Muda S.Z., Terpiłowski J., Preiskorn M.: Int. J. Thermophys. 24, 837 (2003)CrossRefGoogle Scholar
  38. 38.
    S. Torquato, in Random Heterogeneous Materials: Microstructure and Macroscopic Properties, ed. by S.S. Antman, J.E. Marsden, L. Sirovich, S. Wiggins (Springer, New York, 2002)Google Scholar
  39. 39.
    Munro L.E., Longstaffe F.J., White C.D.: Palaeogeogr. Palaeoclimatol. Palaeoecol. 249, 90 (2007)CrossRefGoogle Scholar
  40. 40.
    Kamat S., Kessler H., Ballarini R., Nassirou M., Heuer A.H.: Acta Mater. 52, 2395 (2004)CrossRefGoogle Scholar
  41. 41.
    Hernandez-Ayala A., Quintana P., Alvarado-Gil J.J., Aldana D.: J. Phys. IV 125, 691 (2005)CrossRefGoogle Scholar
  42. 42.
    J.J. Alvarado-Gil, P. Quintana, in Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, ed. by E. Marín-Morales (Transworld Research Network, Kerala, 2009), pp. 191–203Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • S. Trujillo
    • 1
  • P. Martínez-Torres
    • 1
  • P. Quintana
    • 1
  • Juan Jose Alvarado-Gil
    • 1
  1. 1.Depto. de Física AplicadaCINVESTAV-IPN Unidad MéridaMéridaMéxico

Personalised recommendations