International Journal of Thermophysics

, Volume 31, Issue 3, pp 585–594 | Cite as

Ultrasonic Velocity and Density Studies of Solutions of Maleic Acid and Tartaric Acid in Water at T = (298.15 and 308.15) K

  • Sanjeevan J. Kharat


Ultrasonic-velocity and density measurements of aqueous solutions of maleic acid and tartaric acid have been made as a function of molality, at T = (298.15 and 308.15) K, and at atmospheric pressure. A molality range has been studied from (0.2603 to 2.6309) mol·kg−1 and (0.4451 to 2.6621) mol·kg−1 for maleic and tartaric acids, respectively. The experimental data have been correlated with molality using a polynomial equation. Furthermore, apparent molar volume, partial molar volume, apparent-specific molar volume, isentropic compressibility, apparent molar isentropic compressibility, limiting apparent molar isentropic compressibility, and isentropic apparent-specific compressibility values have been calculated from experimental values of densities and ultrasonic velocities. The calculated parameters have been interpreted in terms of solute–solvent interactions, solute–solute interactions, structure making/breaking behavior of acids, and their taste quality in water.


Aqueous solution Density Maleic acid Tartaric acid Ultrasonic velocity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.O. Maryadele, The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, 4th edn. (Merck and Co., Inc., Whitehouse Station, NJ, 2006)Google Scholar
  2. 2.
    Hayvarinen A.P., Lihaveinen H., Gaman A., Vairila L., Ojala H., Kulmala M., Viisanen Y.: J. Chem. Eng. Data 51, 255 (2006)CrossRefGoogle Scholar
  3. 3.
    Manzurola E., Apelblat A.: J. Chem. Thermodyn. 17, 579 (1985)CrossRefGoogle Scholar
  4. 4.
    Hoiland H., Vikingstad E.: J. Chem. Soc. Faraday Trans. 1 71, 2007 (1975)CrossRefGoogle Scholar
  5. 5.
    Benedetto G., Gavioso R.M., Giuliano Albo P.A., Lago S., Mandonna Ripa D., Spagnolo R.: Int. J. Thermophys. 26, 1667 (2005)CrossRefGoogle Scholar
  6. 6.
    Resa J.M., Gonzalez C., Goenaga J.M., Iglesias M.: J. Therm. Anal. Calorim. 87, 237 (2007)CrossRefGoogle Scholar
  7. 7.
    Wanger W., Pruss A.: J. Phys. Chem. Ref. Data 31, 387 (2002)ADSGoogle Scholar
  8. 8.
    Riddick J.A., Bunger W.B., Sakana T.K.: Organic Solvents. Wiley-Interscience, New York (1986)Google Scholar
  9. 9.
    Polt A., Platzer B., Maurer G.: Chem. Tech. (Leipzig) 44, 216 (1992)Google Scholar
  10. 10.
    Pandey J.D., Jain P., Vyas V.: Can J. Chem. 72, 2486 (1994)CrossRefGoogle Scholar
  11. 11.
    Pandey J.D., Mishra R.K., Dey R.: J. Mol. Liquids 123, 4 (2006)CrossRefGoogle Scholar
  12. 12.
    Kupke D.W.: Physical Principles and Techniques of Physical Chemistry, Part C. Academic Press, New York (1973)Google Scholar
  13. 13.
    I.M. Plotz, R.M. Rosenberg, Chemical Thermodynamic Theory and Methods, 3rd edn. (W.A. Benjamin, Menlo Park, CA, 1972)Google Scholar
  14. 14.
    Redlich D., Mayer D.M.: Chem. Rev. 64, 222 (1964)CrossRefGoogle Scholar
  15. 15.
    Ali A., Shahjahan : J. Iran. Chem. Soc. 3, 340 (2006)Google Scholar
  16. 16.
    Robinson R.A., Stokes R.H.: Electrolyte Solutions. Butterworths, London (1959)Google Scholar
  17. 17.
    Harned H.S., Owen B.B.: Physical Chemistry of Electrolyte Solutions. Chapman and Hall, London (1957)Google Scholar
  18. 18.
    Sadeghi R., Ziamajidi F.: J. Chem. Thermodyn. 39, 1118 (2007)CrossRefGoogle Scholar
  19. 19.
    Soto A., Arce A., Khoshkbarchi M.K.: Biophys. Chem. 74, 165 (1998)CrossRefGoogle Scholar
  20. 20.
    Songjun L., Jie H., Bailing L.: Polym. Int. 54, 96 (2004)Google Scholar
  21. 21.
    Parke S.A., Birch G.G., Roelina D.: Chem. Senses 24, 271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.P. G. Department of ChemistryH. P. T. Arts and R. Y. K. Science CollegeNashikIndia

Personalised recommendations