Advertisement

International Journal of Thermophysics

, Volume 31, Issue 4–5, pp 756–765 | Cite as

Crossover Equation and the Vapor Pressure of Supercooled Water

  • Jana Kalova
  • Radim Mares
Article

Abstract

Recently, Fuentevilla and Anisimov have published a scaled parametric equation of state that is universal in terms of theoretical variables and belongs to the three-dimensional Ising-model class of universality. The equation can be used for description and prediction of properties of supercooled water. The main advantage of the scaled equation mentioned above is the possibility to predict some properties of supercooled water below the limit of homogenous nucleation, where it is very difficult to obtain experimental data. This equation has been used to predict the behavior of the isobaric heat capacity in the range 150 K to 233 K, and from a knowledge of the isobaric heat capacity, calculations of the vapor pressure in the range from 123 K to 273 K have been carried out.

Keywords

Clausius–Clapeyron equation Heat capacity Scaled equation Supercooled water Vapor pressure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Murphy D.M., Koop T.: Q.J.R. Meteorol. Soc. 131, 1539 (2005)CrossRefGoogle Scholar
  2. 2.
    Angell C.A., Oguni M., Sichina W.J.: J. Phys. Chem. 86, 998 (1982)CrossRefGoogle Scholar
  3. 3.
    Tombari E., Ferrari C., Salvetti G.: Chem. Phys. Lett. 300, 749 (1999)CrossRefADSGoogle Scholar
  4. 4.
    Archer D.G., Carter R.W.: J. Phys. Chem. 104, 8563 (2000)Google Scholar
  5. 5.
    Starr F.W., Angell C.A., Stanley H.E.: Physica A 323, 51 (2003)CrossRefADSGoogle Scholar
  6. 6.
    Mishima O., Stanley H.E.: Nature 396, 329 (1998)CrossRefADSGoogle Scholar
  7. 7.
    Xu L., Kumar P., Buldyrev S.V., Chen S.-H., Poole P.H., Sciortino F., Stanley H.E.: Proc. Natl. Acad. Sci. USA 102, 16558 (2005)CrossRefADSGoogle Scholar
  8. 8.
    Fuentevilla D.A., Anisimov M.A.: Phys. Rev. Lett. 97, 195702 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Debenedetti P.G.: Metastable Liquids. Concepts and Principles. Princeton University Press, Princeton, NJ (1996)Google Scholar
  10. 10.
    Wagner W., Pruss A.: J. Phys. Chem. Ref. Data 31, 387 (2002)CrossRefADSGoogle Scholar
  11. 11.
    J. Kalova, R. Mares, Scaled equation of state for supercooled water—comparison with wxperimental sata and IAPWS-95, in Proceedings of the 15th International Conference on the Properties of Water and Steam, Berlin/Germany, 7–11 September 2008Google Scholar
  12. 12.
    Wagner W., Pruss A.: J. Phys. Chem. Ref. Data 16, 893 (1987)ADSGoogle Scholar
  13. 13.
    Pruppacher H.R., Klett J.D.: Microphysics of Clouds and Precipitation, 2nd edn. Kluwer, Dordrecht, The Netherlands (1997)Google Scholar
  14. 14.
    Patek J., Hruby J., Klomfar J., Souckova M., Harvey A.H.: J. Phys. Chem. Ref. Data 38, 21 (2009)CrossRefADSGoogle Scholar
  15. 15.
    M.E. Fisher, in Critical Phenomena, ed. by F.J.W. Hahne (Springer, Berlin, 1982), p. 186Google Scholar
  16. 16.
    D.A. Fuentevilla, A scaled parametric equation of state for the liquid-liquid critical point in supercooled water. Ph.D. Thesis, Department of Chemical and Biomolecular Engineering, University of Maryland, 2007Google Scholar
  17. 17.
    J. Kalova, R. Mares, Equations for the thermodynamic properties at the saturation line in the supercooled water region, in Proceedings of the 15th International Conference on the Properties of Water and Steam, Berlin/Germany, 7–11 September 2008Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute of Technology and Business in Ceske BudejoviceCeske BudejoviceCzech Republic
  2. 2.University of West Bohemia in PilsenPilsenCzech Republic

Personalised recommendations