Advertisement

International Journal of Thermophysics

, Volume 30, Issue 4, pp 1372–1385 | Cite as

Carbon Aerogel-Based High-Temperature Thermal Insulation

  • M. Wiener
  • G. Reichenauer
  • S. Braxmeier
  • F. Hemberger
  • H.-P. Ebert
Article

Abstract

Carbon aerogels, monolithic porous carbons derived via pyrolysis of porous organic precursors synthesized via the sol–gel route, are excellent materials for high-temperature thermal insulation applications both in vacuum and inert gas atmospheres. Measurements at 1773K reveal for the aerogels investigated thermal conductivities of 0.09W · m−1 · K−1 in vacuum and 0.12W · m−1 · K−1 in 0.1MPa argon atmosphere. Analysis of the different contributions to the overall thermal transport in the carbon aerogels shows that the heat transfer via the solid phase dominates the thermal conductivity even at high temperatures. This is due to the fact that the radiative heat transfer is strongly suppressed as a consequence of a high infrared extinction coefficient and the gaseous contribution is reduced since the average pore diameter of about 600nm is limiting the mean free path of the gas molecules in the pores at high temperatures. Based on the thermal conductivity data detected up to 1773K as well as specific extinction coefficients determined via infrared-optical measurements, the thermal conductivity can be extrapolated to 2773K yielding a value of only 0.14W· m−1 · K−1 in vacuum.

Keywords

Carbon aerogels High temperature Porous carbons Thermal conductivity Thermal insulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pekala R.W.: J. Mater. Sci. 24(9), 3221 (1989)CrossRefADSGoogle Scholar
  2. 2.
    Bock V., Nilsson O., Blumm J., Fricke J.: J. Non-Cryst. Solids 185(3), 233 (1995)CrossRefADSGoogle Scholar
  3. 3.
    Hrubesh L.W., Pekala R.W.: J. Mater. Res. 9(3), 731 (1994)CrossRefADSGoogle Scholar
  4. 4.
    Lu X.P., Nilsson O., Fricke J., Pekala R.W.: J. Appl. Phys. 73(2), 581 (1993)CrossRefADSGoogle Scholar
  5. 5.
    Wiener M., Reichenauer G., Hemberger F., Ebert H.-P.: Int. J. Thermophys. 27(6), 1826 (2006)CrossRefGoogle Scholar
  6. 6.
    Proebstle H., Wiener M., Fricke J.: J. Porous. Mat. 10(4), 213 (2003)CrossRefGoogle Scholar
  7. 7.
    Fischer U., Saliger R., Bock V., Petricevic R., Fricke J.: J. Porous. Mat. 4, 281 (1997)CrossRefGoogle Scholar
  8. 8.
    Li W.C., Reichenauer G., Fricke J.: Carbon 40(15), 2955 (2002)CrossRefGoogle Scholar
  9. 9.
    Glora M., Wiener M., Peticevic R., Pröbstle H., Fricke J.: J. Non-Cryst. Solids 285(1–3), 283 (2001)CrossRefADSGoogle Scholar
  10. 10.
    Petricevic R., Glora M., Fricke J.: Carbon 39(6), 857 (2001)CrossRefGoogle Scholar
  11. 11.
    Fricke J.: High Temps. - High Press. 25, 379 (1993)Google Scholar
  12. 12.
    P. Debye, Vorträge uber die kinetische Theorie der Materie und der Elektrizitat (Teubner, Berlin, 1914)Google Scholar
  13. 13.
    Kaganer M.G.: Thermal Insulation in Cryogenic Engineering. IPST Press, Jerusalem, Israel (1969)Google Scholar
  14. 14.
    Reif F., Scott H.L.: Am. J. Phys. 66, 164 (1998)CrossRefADSGoogle Scholar
  15. 15.
    Wiener M., Reichenauer G., Scherb T., Fricke J.: J. Non-Cryst. Solids 350, 126 (2004)CrossRefADSGoogle Scholar
  16. 16.
    Carslaw H.S., Jaeger J.C.: Conduction of Heat in Solids. Oxford Science Publications, Oxford (1995)Google Scholar
  17. 17.
    R. Siegel, J.R. Howell, Thermal Radiation heat transfer (McGraw-Hill Kogakushka, Ltd., Tokyo, 1972)Google Scholar
  18. 18.
    Brunauer S., Emmett P.H., Teller E.: J. Am. Chem. Soc. 60(2), 309 (1938)CrossRefADSGoogle Scholar
  19. 19.
    Gregg S.J., Sing K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press, London (1982)Google Scholar
  20. 20.
    Hanzawa Y., Hatori H., Yoshizawa N., Yamada Y.: Carbon 40(4), 575 (2002)CrossRefGoogle Scholar
  21. 21.
    Touloukian Y.S., Liley P.E., Saxena S.C.: Thermal Conductivity - Nonmetallic Solids, vol. 2. Plenum Publishing Co., New York (1970)Google Scholar
  22. 22.
    Jackson J.D., Fox R.F.: Classical Electrodynamics, Am. J. Phys. 67, 841 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Wiener
    • 1
  • G. Reichenauer
    • 1
  • S. Braxmeier
    • 1
  • F. Hemberger
    • 1
  • H.-P. Ebert
    • 1
  1. 1.Bavarian Center for Applied Energy ResearchWürzburgGermany

Personalised recommendations