Advertisement

International Journal of Thermophysics

, Volume 30, Issue 4, pp 1089–1105 | Cite as

Non-Newtonian Viscosity Modeling of Crude Oils—Comparison Among Models

  • Patsy V. Ramírez-González
  • Juan Pablo Aguayo
  • Sergio E. Quiñones-Cisneros
  • Ulrich K. Deiters
Article

Abstract

The presence of precipitated wax or even just low temperatures may induce non-Newtonian rheological behavior in crude oils. Such behavior can be found at operating conditions, for instance, in reservoirs at deep-water conditions. Therefore, reliable rheological models for crude oils applicable over the wide range of conditions the fluid may encounter are essential for a large number of oil technology applications. Such models must also be composition dependent, as many applications require predicting the rheological behavior of the fluid under strong compositional changes, e.g., recovery applications such as vapor extraction (VAPEX) processes or blending of fluids for improved rheological characteristics for piping, among many other applications. In this study, a comparative analysis between some published models applicable to the description of the non-Newtonian behavior of crude oils is carried out. Emphasis is placed on the stability of the model predictions within the wide range of conditions that may be encountered.

Keywords

Friction theory Non-Newtonian Rheology Viscosity Waxy oils 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quiñones-Cisneros S.E., Zéberg-Mikkelsen C.K., Baylaucq A., Boned C.: Int. J. Thermophys. 25, 1353 (2004)CrossRefGoogle Scholar
  2. 2.
    Quiñones-Cisneros S.E., Schmidt K.A.G., Creek J., Deiters U.K.: Energy Fuels 22, 799 (2008)CrossRefGoogle Scholar
  3. 3.
    Pedersen K.S., Rønningsen H.P.: Energy Fuels 14, 43 (2000)CrossRefGoogle Scholar
  4. 4.
    AI-Zahrani S.M.: J. Pet. Sci. Eng. 17, 211 (1997)CrossRefGoogle Scholar
  5. 5.
    Dante R.C., Geffroy E., Chávez A.E.: Energy Fuels 21, 903 (2007)CrossRefGoogle Scholar
  6. 6.
    Quiñones-Cisneros S.E., Zéberg-Mikkelsen C.K., Stenby E.H.: Fluid Phase Equilib. 178, 1 (2001)CrossRefGoogle Scholar
  7. 7.
    Chung T.-H., Ajlan M., Lee L.L., Starling K.E.: Ind. Eng. Chem. Res. 27, 671 (1988)CrossRefGoogle Scholar
  8. 8.
    O.A. Uyehara, K.M. Watson, A Universal Viscosity Correlation, National Petroleum News (1944), p. RGoogle Scholar
  9. 9.
    Quiñones-Cisneros S.E., Andersen S.I., Creek J.: Energy Fuels 19, 1314 (2005)CrossRefGoogle Scholar
  10. 10.
    S.E. Quiñones-Cisneros, U.K. Deiters, Extension of the Friction Theory to the Rheology of Polymers, VDI “Thermodynamik-Kolloquium,” Dortmund, Germany, (2006)Google Scholar
  11. 11.
    Quiñones-Cisneros S.E., Zéberg-Mikkelsen C.K., Stenby E.H.: Chem. Eng. Sci. 56, 7007 (2001)CrossRefGoogle Scholar
  12. 12.
    Richardson E.G.: Kolloid-Z 65, 32 (1933)CrossRefGoogle Scholar
  13. 13.
    Casson N.: Brit. Soc. Rheol. Bull. 52, 5 (1957)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Patsy V. Ramírez-González
    • 1
  • Juan Pablo Aguayo
    • 1
  • Sergio E. Quiñones-Cisneros
    • 2
  • Ulrich K. Deiters
    • 3
  1. 1.Facultad de Química, Departamento de Ingeniería QuímicaUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  2. 2.Departamento de Reología, Instituto de Investigaciones en MaterialesUniversidad Nacional Autónoma de MéxicoMéxicoMéxico
  3. 3.Institute of Physical ChemistryUniversity of CologneCologneGermany

Personalised recommendations