Advertisement

International Journal of Thermophysics

, Volume 30, Issue 2, pp 448–463 | Cite as

Investigating the Properties of Aqueous Monoisopropanolamine Using Density Data from 283.15K to 353.15K

  • Y. Leong Yeow
  • Jian Ge
  • Yee-Kwong Leong
  • Ash Khan
Article

Abstract

The published isothermal density data of aqueous monoisopropanolamine (MIPA) for different temperatures are converted into molar volumes as a function of composition. Tikhonov regularization is applied to obtain the derivatives of molar volume with respect to composition. These derivatives are used to compute the two partial molar volumes of the aqueous solution covering the entire composition range and for all the temperatures reported. A second application of Tikhonov regularization is then used to obtain the partial molar coefficients of the thermal expansion of the solution under constant pressure. This is followed by an examination of the second derivative of the partial molar volumes with respect to temperature over the entire composition range. The signs of these derivatives, for different compositions and temperatures, allow the change in the molecular interaction between MIPA and water in aqueous solution to be discussed.

Keywords

Aqueous monoisopropanolamine Partial molar volumes Thermal expansion Coefficient Tikhonov regularization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sharma M.M., Danckwerts P.V.: Chem. Eng. Sci. 18, 735 (1963)Google Scholar
  2. 2.
    Hikita H., Ishikawa H., Murakami T., Ishii T.: J. Chem. Eng. Jpn 14, 411 (1981)CrossRefGoogle Scholar
  3. 3.
    Camacho F., Sánchez S., Pacheco R.: Ind. Eng. Chem. Res. 36, 4358 (1997)CrossRefGoogle Scholar
  4. 4.
    Mokraoui S., Valtz A., Coquelet C., Richon D.: Thermochem. Acta 440, 122 (2006)CrossRefGoogle Scholar
  5. 5.
    Mokraoui S., Valtz A., Coquelet C., Richon D.: Thermochem. Acta 471, 106 (2008)CrossRefGoogle Scholar
  6. 6.
    Mundhwa M., Henni A.: J. Chem. Eng. Data 52, 491 (2007)CrossRefGoogle Scholar
  7. 7.
    H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems. Kluwer, Dordrecht, 2000Google Scholar
  8. 8.
    Lubansky A.S., Yeow Y.L., Leong Y.K., Wickramasinghe S.R., Han B.: AIChE J. 52, 323 (2006)CrossRefGoogle Scholar
  9. 9.
    Kell G.S.: J. Chem. Eng. Data 12, 66 (1967)CrossRefGoogle Scholar
  10. 10.
    Sandler S.I.: Chemical, Biochemical and Engineering Thermodynamics, 4th edn. Wiley, New York (2006)Google Scholar
  11. 11.
    Yeow Y.L., Leong Y.-K.: J. Chem. Thermodyn. 39, 1675 (2007)CrossRefGoogle Scholar
  12. 12.
    Yeow Y.L., Leong Y.-K.: J. Solution Chem. 36, 1047 (2007)CrossRefGoogle Scholar
  13. 13.
    Burkill J.G.: A First Course in Mathematical Analysis. CUP, Cambridge (1978)MATHGoogle Scholar
  14. 14.
    Wahba G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)MATHGoogle Scholar
  15. 15.
    Hepler L.G.: Can. J. Chem. 47, 4613 (1969)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Y. Leong Yeow
    • 1
  • Jian Ge
    • 1
  • Yee-Kwong Leong
    • 2
  • Ash Khan
    • 3
  1. 1.Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleAustralia
  2. 2.School of Mechanical EngineeringThe University of Western AustraliaCrawleyAustralia
  3. 3.CO2 Cooperative Research CentreParkvilleAustralia

Personalised recommendations