International Journal of Thermophysics

, Volume 31, Issue 10, pp 1904–1918 | Cite as

Hot-Ball Method for Measuring Thermal Conductivity

  • L’udovít Kubičár
  • Viliam Vretenár
  • Vladimír Štofanik
  • Vlastimil Boháč


This article deals with the theory and performance of a sensor for measuring thermal conductivity. The sensor, in the form of a small ball, generates heat and simultaneously measures its temperature response. An ideal model of the hollow sphere in an infinite medium furnishes a working equation of the hot-ball method. A constant heat flux through the surface of the ball generates the temperature field. The thermal conductivity of the surrounding medium is to be determined by the stabilized value of the temperature response, i.e., when the steady-state regime is attained. Error components of the sensor are discussed due to analysis of the deviations of the real hot-ball construction from the ideal model. The functionality of a set of hot balls has been tested, and the calibration for a limited range of thermal conductivities was performed. A working range of thermal conductivities of tested materials has been estimated to be from 0.06 W· m−1 · K−1 up to 1 W· m−1 · K−1.


Hot-ball method Sensor Thermal conductivity Transient methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Krempaský, Meranie termofyzikálnych velič ín (Vyd. SAV, Bratislava, 1969), pp. 1–288 [in Slovak]Google Scholar
  2. 2.
    L’. Kubičár, V. Boháč, Review of several dynamic methods of measuring thermophysical parameters, in Proceedings of 24th International Conference on Thermal Conductivity/12th International Thermal Expansion Symposium, ed. by P.S. Gaal, D.E. Apostolescu (Technomic Pub. Co., Lancaster, PA, 1999), pp. 135–149Google Scholar
  3. 3.
    L’. Kubičár, Pulse method of measuring basic thermophysical parameters, in Comprehensive Analytical Chemistry, vol. XII, Thermal Analysis, Part E, ed. by G. Svehla (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1990), pp. 1–350Google Scholar
  4. 4.
    N. Lockmuller, J. Redgrove, L’. Kubičár, High Temp. High Press. 35–36, 127 (2003/2004)Google Scholar
  5. 5.
  6. 6.
    Model R., Stosch R., Hammerschmidt U.: Int. J. Thermophys. 28, 1447 (2007)CrossRefGoogle Scholar
  7. 7.
    Hammerschmidt U., Sabuga W.: Int. J. Thermophys. 21, 1255 (2000)CrossRefGoogle Scholar
  8. 8.
    Zhang H., He L., Cheng S., Zhai Z., Gao D.: Meas. Sci. Technol. 14, 1396 (2003)CrossRefADSGoogle Scholar
  9. 9.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1956), p. 248Google Scholar
  10. 10.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1956), p. 349Google Scholar
  11. 11.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1956), p. 232Google Scholar
  12. 12.
    Kubičár L., Vretenár V., Boháč V., Tiano P.: Int. J. Thermophys. 27, 220 (2006)CrossRefGoogle Scholar
  13. 13.
    Assael M.J., Antoniadis K.D., Wu J.: Int. J. Thermophys. 29, 1257 (2006)CrossRefGoogle Scholar
  14. 14.
    V. Boháč, L’. Kubičár, V. Vretenár, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdib́, L.G. Bermanec, T. Veliki, T. Stašič (FSB/LPM, Zagreb, Croatia, 2004), pp. 1299–1306Google Scholar
  15. 15.
    Matiašovský P., Koronthályová O.: Build. Res. J. 42, 265 (1994)Google Scholar
  16. 16.
    Goual S., Bali A., Qu′eneudec M.: J. Phys. D. Appl. Phys. 32, 3041 (1999)CrossRefADSGoogle Scholar
  17. 17.
    Koronthályová O., Matiašovský P.: Build. Res. J. 50, 289 (2002)Google Scholar
  18. 18.
    L’. Kubičár, V. Boháč, V. Vretenár, Thermophysical parameters of phenolic foam measured by the pulse transient method: methodology for low thermal conductivity materials, in Proceedings of 27th International Conference on Thermal Conductivity/15th International Thermal Expansion Symposium, ed. by H. Wang, W. Porter (DEStech Publications, Inc., Lancaster, PA, 2005), p. 328Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • L’udovít Kubičár
    • 1
  • Viliam Vretenár
    • 1
  • Vladimír Štofanik
    • 1
  • Vlastimil Boháč
    • 1
  1. 1.Institute of Physics SAVBratislavaSlovakia

Personalised recommendations