Advertisement

International Journal of Thermophysics

, Volume 30, Issue 2, pp 693–709 | Cite as

Thermomechanical Deformation in an Orthotropic Micropolar Thermoelastic Solid

  • Rajneesh Kumar
  • Rajani Rani Gupta
Article

Abstract

The thermomechanical deformation in an orthotropic micropolar generalized thermoelastic half-space is investigated. Descarte’s method, along with the irreducible case of Cardon’s method, is used to obtain the roots of an eight-degree equation. Laplace and Fourier transform techniques are used to obtain the general solution for the set of boundary value problems. Particular types of boundary conditions have been taken to illustrate the utility of the approach. The transformed components of the stresses and temperature distribution have been obtained. A numerical inversion technique is employed to invert the integral transform, and the resulting quantities are presented graphically.

Keywords

Orthotropic micropolar thermoelastic solid Relaxation time Half-space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eringen A.C., Suhubi E.S.: Int. J. Eng. Sci. 2, 189 (1964)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Eringen A.C.: J. Math. Mech. 15, 909 (1996)MathSciNetGoogle Scholar
  3. 3.
    Lord H., Shulman Y.: J. Mech. Phys. Solids 15, 299 (1967)MATHCrossRefADSGoogle Scholar
  4. 4.
    Green A.E., Lindsay K.A.: J. Elast. 2, 1 (1972)MATHCrossRefGoogle Scholar
  5. 5.
    Dhaliwal R., Sherief H.: Quart. Appl. Math. 23, 1 (1980)MathSciNetGoogle Scholar
  6. 6.
    Wang C.Y., Achenbach J.D.: Wave Motion 16, 389 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Wu K.C.: J. Acoust. Soc. Am. 109, 2625 (2001)CrossRefADSGoogle Scholar
  8. 8.
    W. Nowacki, “Couple stress in the theory of thermoelasticity,” in Proceedings of ITUAM Symposia, Vienna, ed. by H. Parkus, L.I. Sedov (Springer-Verlag, New York, 1966), pp. 259–278Google Scholar
  9. 9.
    A.C. Eringen, Foundations of Micropolar Thermoelasticity, Course of Lectures No. 23, CSIM, Udine, Italy (Springer-Verlag, New York, 1970)Google Scholar
  10. 10.
    Tauchert T.R., Claus W.D., Ariman T.: Int. J. Eng. Sci. 6, 36 (1968)CrossRefGoogle Scholar
  11. 11.
    Dost S., Tabarrok B.: Int. J. Eng. Sci. 16, 173 (1978)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Chandrasekhariah D.S.: Int. J. Eng. Sci. 24, 1389 (1986)CrossRefGoogle Scholar
  13. 13.
    Martynenko M.D., Bosyakov S.M.: J. Eng. Phys. Thermophys. 73, 1004 (2000)CrossRefGoogle Scholar
  14. 14.
    M. Al. Hasan, J. Dyszlewicz, J. Therm. Stresses 24, 1007 (2000)Google Scholar
  15. 15.
    M. Al. Hasan, J. Dyszlewicz, J. Therm. Stresses 24, 709 (2001)Google Scholar
  16. 16.
    Tian-Min D.: Appl. Math. Mech. 23(2), 119 (2002)CrossRefGoogle Scholar
  17. 17.
    Martynenko M.D., Bosyakov S.M.: J. Eng. Phys. Thermophys. 75, 41 (2002)CrossRefGoogle Scholar
  18. 18.
    Kumar R., Ailawalia P.: Eur. J. Mech. A-Solids 25, 271 (2006)MATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Kumar R., Ailawalia P.: Int. J. Solids Struct. 43, 2761 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Kumar R., Ailawalia P.: Int. J. Solids Struct. 44, 4063 (2007)Google Scholar
  21. 21.
    Kumar R., Ailawalia P.: Int. J. Thermophys. 28, 342 (2007)CrossRefGoogle Scholar
  22. 22.
    Iesan D.: J. Eng. Math. 8, 107 (1974)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Kumar R., Choudhary S.: Meccanica 38, 349 (2003)MATHCrossRefGoogle Scholar
  24. 24.
    Kumar R., Choudhary S.: J. Sound Vibration 239, 467 (2001)CrossRefADSGoogle Scholar
  25. 25.
    Kumar R., Choudhary S.: Sadhana 29, 83 (2004)MATHCrossRefGoogle Scholar
  26. 26.
    Bahar L.Y., Hetnarski R.B.: J. Therm. Stresses 1, 135 (1978)CrossRefGoogle Scholar
  27. 27.
    R. S. Dhaliwal, A. Singh, “Micropolar thermoelasticity”, in Thermal Stresses II, Mechanical and Mathematical Methods, Ser. 2, ed. by R. Hetarski (North-Holland, Amsterdam, 1987)Google Scholar
  28. 28.
    Kumar R., Deswal S.: J. Sound Vibration 239, 467 (2001)CrossRefADSGoogle Scholar
  29. 29.
    Honig G., Hirdes V.: J. Comput. Appl. Math. 10, 113 (1984)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Press W.H., Teukolshy S.A., Vellering W.T., Flannery B.P.: Numerical Recipes. Cambridge University Press, Cambridge (1986)Google Scholar
  31. 31.
    R. D. Gauthier, “Experimental investigations on micropolar media”, in Mechanics of Micropolar Media, ed. by O. Brulin, R.K.T Hsieh (World Scientific, Singapore, 1982)Google Scholar
  32. 32.
    Ezzat M.A., Othman M.I., Smaan A.A.: Int. J. Eng. Sci. 39, 1383 (2001)CrossRefGoogle Scholar
  33. 33.
    Chandrasekhariah D.S., Srinath K.S.: J. Elast. 46, 19 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsKurukshetra UniversityKurukshetraIndia

Personalised recommendations