Advertisement

Linearity Study of a Spectral Emissivity Measurement Facility

  • Z. Yuan
  • J. Zhang
  • J. Zhao
  • Y. Liang
  • Y. Duan
Article

Abstract

Linearity is one of the important characteristics of a spectral radiation measurement facility. Basically, it depends on the linearity of the spectral responsivity of the detector and amplifier at different wavelengths. As spectral emissivity is measured over wide wavelength and temperature ranges and the detection system has significant drift and noise, it is not easy to measure the linearity of this facility accurately using only one standard radiator. A simple double-blackbody method has been adopted to simulate reference emissivity samples and test the linearity of the spectral emissivity measurement facility developed at the National Institute of Metrology. Good linearity results were obtained from 3 μm to 15 μm. This method minimizes the influence of drift on the emissivity measurement over a wide ratio of measurement signals and wide spectral range.

Keywords

Double-blackbody method Linearity Spectral emissivity Spectral responsivity 

References

  1. 1.
    Mielenz K.D., Eckerle K.L.: Appl. Optics. 11, 2294 (1972)CrossRefADSGoogle Scholar
  2. 2.
    Sanders C.L.: J. Res. Nat. Bur. Stand. 76, 437 (1972)Google Scholar
  3. 3.
    Jung H.J.: Metrologia. 15, 173 (1979)CrossRefADSGoogle Scholar
  4. 4.
    Coslovi L., Righini F.: Appl. Optics. 19, 3200 (1980)CrossRefADSGoogle Scholar
  5. 5.
    Theocharous E., Ishii J., Fox N.P.: Appl. Optics. 43, 4182 (2004)CrossRefADSGoogle Scholar
  6. 6.
    Theocharous E.: Appl. Optics. 45, 2381 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Rahmelow K.: Appl. Optics. 36, 2123 (1997)CrossRefADSGoogle Scholar
  8. 8.
    Zhang Z.M., Zhu C.J., Hanssen L.M.: Appl. Spectros. 51, 576 (1997)CrossRefADSGoogle Scholar
  9. 9.
    Fiedler L., Newman S., Bakan S.: Appl. Optics. 44, 5332 (2005)ADSGoogle Scholar
  10. 10.
    Ishii J., Ono A.: Measure. Sci. Technol. 12, 2103 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Z. Yuan, J. Zhang, J. Zhao, Chin. J. Sci. Instrum. 29, (2008) (in press)Google Scholar
  12. 12.
    L. Hanssen, S. Kaplan, S. Mekhontsev, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin), pp. 265–270 (2002)Google Scholar
  13. 13.
    L. Hanssen, A. Prokhorov, V. Khromchenko, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by D. Zvizdić (FSB/LPM, Zagreb, Croatia), pp. 539–544 (2004)Google Scholar
  14. 14.
    Zhang B., Redgrove J., Clark J.: Int. J. Thermophys. 25, 423 (2004)CrossRefGoogle Scholar
  15. 15.
    Furukawa T., Iuchi T.: Rev. Sci. Instrum. 71, 2843 (2000)CrossRefADSGoogle Scholar
  16. 16.
    Chekhovskoi V.Ya., Tarasov V.D., Grigor’eva N.V.: High Temp. 42, 252 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.National Institute of MetrologyBeijingChina
  2. 2.Tianjin UniversityTianjinChina

Personalised recommendations