International Journal of Thermophysics

, Volume 29, Issue 1, pp 67–81 | Cite as

Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points

  • W. L. Tew


The sensitivities of melting temperatures to isotopic variations in monatomic and diatomic atmospheric gases using both theoretical and semi-empirical methods are estimated. The current state of knowledge of the vapor-pressure isotope effects (VPIE) and triple-point isotope effects (TPIE) is briefly summarized for the noble gases (except He), and for selected diatomic molecules including oxygen. An approximate expression is derived to estimate the relative shift in the melting temperature with isotopic substitution. In general, the magnitude of the effects diminishes with increasing molecular mass and increasing temperature. Knowledge of the VPIE, molar volumes, and heat of fusion are sufficient to estimate the temperature shift or isotopic sensitivity coefficient via the derived expression. The usefulness of this approach is demonstrated in the estimation of isotopic sensitivities and uncertainties for triple points of xenon and molecular oxygen for which few documented estimates were previously available. The calculated sensitivities from this study are considerably higher than previous estimates for Xe, and lower than other estimates in the case of oxygen. In both these cases, the predicted sensitivities are small and the resulting variations in triple point temperatures due to mass fractionation effects are less than 20 μK.


Atmospheric gases Isotopes Mass fractionation Noble gases Oxygen Temperature Triple point Vapor-pressure isotope effect Xenon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Preston-Thomas, Metrologia 27, 3 (1990); ibid, 107 (erratum)Google Scholar
  2. 2.
    Pavese F. (2005). Metrologia 42, 194CrossRefADSGoogle Scholar
  3. 3.
    Bohlke J.K., de Laeter J.R., De Biévre P., Hidaka H., Peiser H.S., Rosman K.J.R., Taylor P.D.P. (2005). J. Phys. Chem. Ref. Data 34, 57CrossRefADSGoogle Scholar
  4. 4.
    Bigeleisen J. (1961). J. Chem. Phys. 34: 1485CrossRefADSGoogle Scholar
  5. 5.
    Jansco G., Van Hook W.A. (1974). Chem. Rev. 74, 689CrossRefGoogle Scholar
  6. 6.
    Jeevanandam M. (1971). J. Chem. Phys. 55: 5735CrossRefADSGoogle Scholar
  7. 7.
    F. Pavese, G. Molinar, Modern Gas-Based Temperature and Pressure Measurements, Int. Cryo. Monograph Series (Springer, New York, 1992)Google Scholar
  8. 8.
    Bigeleisen J., Roth E. (1961). J. Chem. Phys. 35: 68CrossRefADSGoogle Scholar
  9. 9.
    Furukawa G.T. (1972). Metrologia 8, 11CrossRefADSGoogle Scholar
  10. 10.
    Lee M.W., Fuks S., Bigeleisen J. (1970). J. Chem. Phys. 53: 4066CrossRefADSGoogle Scholar
  11. 11.
    Lee M.W., Eshelman D.M., Bigeleisen J. (1972). J. Chem. Phys. 56: 4585CrossRefADSGoogle Scholar
  12. 12.
    Canongia Lopes J.N., Pádua A.A.H., Rebelo L.P.N., Bigeleisen J. (2003). J. Chem. Phys. 118: 5028CrossRefADSGoogle Scholar
  13. 13.
    Chialvo A.A., Horita J. (2003). J. Chem. Phys. 119: 4458CrossRefADSGoogle Scholar
  14. 14.
    Clusisus K. (1941). Z. Phys. Chem., Abt. B 50, 403Google Scholar
  15. 15.
    Grigor’ev V.M. (1962). Zh. Fiz. Khim. 36: 1779Google Scholar
  16. 16.
    Hill K.D., Steele A.G. (2005). Metrologia 42, 278CrossRefADSGoogle Scholar
  17. 17.
    T.F. Johns, in Proceedings of the International Symposium on Isotope Separation, ed. by J. Kistemaker, J. Bigeleisen, A. Nier (North-Holland Publishing Co., Amsterdam, 1958), pp. 74–101Google Scholar
  18. 18.
    Clusius K., Schleich K., Vecchi M. (1959). Helv. Chim. Acta 42: 2654CrossRefGoogle Scholar
  19. 19.
    Clusius K., Schleich K. (1958). Helv. Chim. Acta 41: 1342CrossRefGoogle Scholar
  20. 20.
    Clusius K., Schleich K. (1961). Helv. Chim. Acta 44: 1162CrossRefGoogle Scholar
  21. 21.
    Clusius K., Endtinger F., Schleich K. (1961). Helv. Chim. Acta 44, 98CrossRefGoogle Scholar
  22. 22.
    Groth W., Ihle H., Murrenhoff A. (1956). Angew. Chem. 68, 644CrossRefGoogle Scholar
  23. 23.
    Bigeleisen J. (1960). J. Chem. Phys. 33: 1775CrossRefADSGoogle Scholar
  24. 24.
    F. Pavese, in Temperature: Its Measurement and Control in Science and Industry, vol. 6, Part 1, ed. by D.C. Ripple (AIP, New York, 2003), pp. 167–172Google Scholar
  25. 25.
    Valkiers S., Aregbe Y., Taylor P.D.P., De Biévre P. (1998). Int. J. Mass Spectrom. Ion Proc. 173: 55CrossRefADSGoogle Scholar
  26. 26.
    Nier A.O. (1950). Phys. Rev. 79, 450CrossRefADSGoogle Scholar
  27. 27.
    S. Valkiers, F. Schaefer, P. De Biévre, in Separation Technology, ed. by E.F. Vansant (Elsevier, Amsterdam, 1993), pp. 965–968Google Scholar
  28. 28.
    Aregbe Y., Valkiers S., Mayer K., De Biévre P., Wessel R.M., Alink A. (1998). Metrologia 35, 7CrossRefADSGoogle Scholar
  29. 29.
    Podosek F.A., Huneke J.C., Burnett D.S., Wasserburg G.J. (1971). Earth Planet. Sci. Lett. 10, 199CrossRefADSGoogle Scholar
  30. 30.
    Basford J.R., Dragon J.C., Pepin R.O., Coscio M.R., Murthy M.R. (1973). Geochim. Cosmochim. Acta, Supp. 4, 2, 1915–1955ADSGoogle Scholar
  31. 31.
    F.L. Mohler, NBS Tech. Note 51 (U.S. Dept. of Commerce, Washington DC, USA, May 1960)Google Scholar
  32. 32.
    Moldover M.R., Trusler J.P.M., Edwards T.J., Mehl J.B., Davis R.S. (1988). J. Res. Natl. Bur. Stand. (U.S.) 93, 85Google Scholar
  33. 33.
    Melton C.E., Massey W., Abels B.N. (1970). Z. Naturforsh. 26a: 1241ADSGoogle Scholar
  34. 34.
    Quinn T.J., Colclough A.R., Chandler T.R.D. (1976). Phil. Trans. Roy. Soc. Lond. A283, 367CrossRefADSGoogle Scholar
  35. 35.
    Benedetto G., Gavioso R.M., Spagnolo R., Marcarino P., Merlone A. (2004). Metrologia 41, 74CrossRefADSGoogle Scholar
  36. 36.
    F. Pavese, B. Fellmuth, K.D. Hill, D. Head, Y. Hermier, L. Lipinski, T. Nakano, A. Peruzzi, H. Sakurai, A. Smyrka-Grzebyk, A.G. Steele, P.P.M. Steur, O. Tamura, W.L. Tew, S. Valkiers, L. Wolber, in Proceedings of TEMPMEKO 2007, Int. J. Thermophys., DOI:  10.1007/s10765-007-0329-1
  37. 37.
    Pitre L., Moldover M.R., Tew W.L. (2006). Metrologia 43: 142CrossRefADSGoogle Scholar
  38. 38.
    Coplen T.B., Böhlke J.K., De Biévre P., Ding T., Holden N.E., Hopple J.A., Krouse H.R., Lamberty A., Peiser H.S., Révész K., Rieder S.E., Rosman K.J.R., Roth E., Taylor P.D.P., Vocke R.D. Jr., Xiao Y.K. (2002). Pure Appl. Chem. 74: 1987CrossRefGoogle Scholar
  39. 39.
    J.L. Tiggelman, Low-temperature platinum thermometry and vapour pressures of neon and oxygen. Doctoral Thesis, Leiden, 1973Google Scholar
  40. 40.
    Furukawa G.T. (1986). J. Res. Natl. Bur. Stand. (U.S.) 91: 255Google Scholar
  41. 41.
    Meijer H.A., Li W.J. (1998). Isotopes Environ. Health Studies 34: 349CrossRefGoogle Scholar

Copyright information

© GovernmentEmployee: United States Department of Commerce, NIST 2008

Authors and Affiliations

  1. 1.Process Measurements Division (836)National Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations