Skip to main content
Log in

Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The sensitivities of melting temperatures to isotopic variations in monatomic and diatomic atmospheric gases using both theoretical and semi-empirical methods are estimated. The current state of knowledge of the vapor-pressure isotope effects (VPIE) and triple-point isotope effects (TPIE) is briefly summarized for the noble gases (except He), and for selected diatomic molecules including oxygen. An approximate expression is derived to estimate the relative shift in the melting temperature with isotopic substitution. In general, the magnitude of the effects diminishes with increasing molecular mass and increasing temperature. Knowledge of the VPIE, molar volumes, and heat of fusion are sufficient to estimate the temperature shift or isotopic sensitivity coefficient via the derived expression. The usefulness of this approach is demonstrated in the estimation of isotopic sensitivities and uncertainties for triple points of xenon and molecular oxygen for which few documented estimates were previously available. The calculated sensitivities from this study are considerably higher than previous estimates for Xe, and lower than other estimates in the case of oxygen. In both these cases, the predicted sensitivities are small and the resulting variations in triple point temperatures due to mass fractionation effects are less than 20 μK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Preston-Thomas, Metrologia 27, 3 (1990); ibid, 107 (erratum)

  2. Pavese F. (2005). Metrologia 42, 194

    Article  ADS  Google Scholar 

  3. Bohlke J.K., de Laeter J.R., De Biévre P., Hidaka H., Peiser H.S., Rosman K.J.R., Taylor P.D.P. (2005). J. Phys. Chem. Ref. Data 34, 57

    Article  ADS  Google Scholar 

  4. Bigeleisen J. (1961). J. Chem. Phys. 34: 1485

    Article  ADS  Google Scholar 

  5. Jansco G., Van Hook W.A. (1974). Chem. Rev. 74, 689

    Article  Google Scholar 

  6. Jeevanandam M. (1971). J. Chem. Phys. 55: 5735

    Article  ADS  Google Scholar 

  7. F. Pavese, G. Molinar, Modern Gas-Based Temperature and Pressure Measurements, Int. Cryo. Monograph Series (Springer, New York, 1992)

  8. Bigeleisen J., Roth E. (1961). J. Chem. Phys. 35: 68

    Article  ADS  Google Scholar 

  9. Furukawa G.T. (1972). Metrologia 8, 11

    Article  ADS  Google Scholar 

  10. Lee M.W., Fuks S., Bigeleisen J. (1970). J. Chem. Phys. 53: 4066

    Article  ADS  Google Scholar 

  11. Lee M.W., Eshelman D.M., Bigeleisen J. (1972). J. Chem. Phys. 56: 4585

    Article  ADS  Google Scholar 

  12. Canongia Lopes J.N., Pádua A.A.H., Rebelo L.P.N., Bigeleisen J. (2003). J. Chem. Phys. 118: 5028

    Article  ADS  Google Scholar 

  13. Chialvo A.A., Horita J. (2003). J. Chem. Phys. 119: 4458

    Article  ADS  Google Scholar 

  14. Clusisus K. (1941). Z. Phys. Chem., Abt. B 50, 403

    Google Scholar 

  15. Grigor’ev V.M. (1962). Zh. Fiz. Khim. 36: 1779

    Google Scholar 

  16. Hill K.D., Steele A.G. (2005). Metrologia 42, 278

    Article  ADS  Google Scholar 

  17. T.F. Johns, in Proceedings of the International Symposium on Isotope Separation, ed. by J. Kistemaker, J. Bigeleisen, A. Nier (North-Holland Publishing Co., Amsterdam, 1958), pp. 74–101

  18. Clusius K., Schleich K., Vecchi M. (1959). Helv. Chim. Acta 42: 2654

    Article  Google Scholar 

  19. Clusius K., Schleich K. (1958). Helv. Chim. Acta 41: 1342

    Article  Google Scholar 

  20. Clusius K., Schleich K. (1961). Helv. Chim. Acta 44: 1162

    Article  Google Scholar 

  21. Clusius K., Endtinger F., Schleich K. (1961). Helv. Chim. Acta 44, 98

    Article  Google Scholar 

  22. Groth W., Ihle H., Murrenhoff A. (1956). Angew. Chem. 68, 644

    Article  Google Scholar 

  23. Bigeleisen J. (1960). J. Chem. Phys. 33: 1775

    Article  ADS  Google Scholar 

  24. F. Pavese, in Temperature: Its Measurement and Control in Science and Industry, vol. 6, Part 1, ed. by D.C. Ripple (AIP, New York, 2003), pp. 167–172

  25. Valkiers S., Aregbe Y., Taylor P.D.P., De Biévre P. (1998). Int. J. Mass Spectrom. Ion Proc. 173: 55

    Article  ADS  Google Scholar 

  26. Nier A.O. (1950). Phys. Rev. 79, 450

    Article  ADS  Google Scholar 

  27. S. Valkiers, F. Schaefer, P. De Biévre, in Separation Technology, ed. by E.F. Vansant (Elsevier, Amsterdam, 1993), pp. 965–968

  28. Aregbe Y., Valkiers S., Mayer K., De Biévre P., Wessel R.M., Alink A. (1998). Metrologia 35, 7

    Article  ADS  Google Scholar 

  29. Podosek F.A., Huneke J.C., Burnett D.S., Wasserburg G.J. (1971). Earth Planet. Sci. Lett. 10, 199

    Article  ADS  Google Scholar 

  30. Basford J.R., Dragon J.C., Pepin R.O., Coscio M.R., Murthy M.R. (1973). Geochim. Cosmochim. Acta, Supp. 4, 2, 1915–1955

    ADS  Google Scholar 

  31. F.L. Mohler, NBS Tech. Note 51 (U.S. Dept. of Commerce, Washington DC, USA, May 1960)

  32. Moldover M.R., Trusler J.P.M., Edwards T.J., Mehl J.B., Davis R.S. (1988). J. Res. Natl. Bur. Stand. (U.S.) 93, 85

    Google Scholar 

  33. Melton C.E., Massey W., Abels B.N. (1970). Z. Naturforsh. 26a: 1241

    ADS  Google Scholar 

  34. Quinn T.J., Colclough A.R., Chandler T.R.D. (1976). Phil. Trans. Roy. Soc. Lond. A283, 367

    Article  ADS  Google Scholar 

  35. Benedetto G., Gavioso R.M., Spagnolo R., Marcarino P., Merlone A. (2004). Metrologia 41, 74

    Article  ADS  Google Scholar 

  36. F. Pavese, B. Fellmuth, K.D. Hill, D. Head, Y. Hermier, L. Lipinski, T. Nakano, A. Peruzzi, H. Sakurai, A. Smyrka-Grzebyk, A.G. Steele, P.P.M. Steur, O. Tamura, W.L. Tew, S. Valkiers, L. Wolber, in Proceedings of TEMPMEKO 2007, Int. J. Thermophys., DOI: 10.1007/s10765-007-0329-1

  37. Pitre L., Moldover M.R., Tew W.L. (2006). Metrologia 43: 142

    Article  ADS  Google Scholar 

  38. Coplen T.B., Böhlke J.K., De Biévre P., Ding T., Holden N.E., Hopple J.A., Krouse H.R., Lamberty A., Peiser H.S., Révész K., Rieder S.E., Rosman K.J.R., Roth E., Taylor P.D.P., Vocke R.D. Jr., Xiao Y.K. (2002). Pure Appl. Chem. 74: 1987

    Article  Google Scholar 

  39. J.L. Tiggelman, Low-temperature platinum thermometry and vapour pressures of neon and oxygen. Doctoral Thesis, Leiden, 1973

  40. Furukawa G.T. (1986). J. Res. Natl. Bur. Stand. (U.S.) 91: 255

    Google Scholar 

  41. Meijer H.A., Li W.J. (1998). Isotopes Environ. Health Studies 34: 349

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Tew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tew, W.L. Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points. Int J Thermophys 29, 67–81 (2008). https://doi.org/10.1007/s10765-008-0371-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0371-7

Keywords

Navigation