International Journal of Thermophysics

, Volume 29, Issue 6, pp 1974–1986 | Cite as

Wettability Studies of Pb-Free Soldering Materials

  • Z. Moser
  • W. Gąsior
  • J. Pstruś
  • A. Dębski


For Pb-free soldering materials, two main substitutes are currently being considered, consisting of Sn–Ag and Sn–Ag–Cu eutectics, both with melting points higher than that of the Sn–Pb eutectic. Therefore, both will require higher soldering temperatures for industrial applications. Also, both eutectics have a higher surface tension than the Sn–Pb eutectic, requiring wettability studies on adding Bi, Sb, and In to the eutectics to decrease the melting points and surface tension. The experimental results for the surface tension were compared with thermodynamic modeling by Butler’s method and were used to create the SURDAT database, which also includes densities for pure metals, binary, ternary, quaternary, and quinary alloys. To model the surface tension, excess Gibbs energies of the molten components were taken from the ADAMIS database. For the case of the Ag–Sn system, enthalpies of formation of Ag3Sn from solution calorimetry were used for checking optimized thermodynamic parameters. In the study of Sn–Ag–Cu–Bi–Sb liquid alloys, the range of possible Bi compositions for practical applications has been used to formulate a generalized metric of wettability, which was checked by measurements of the influence of In on the Sn–Ag–Cu system.


Industrial applications Interfacial tension Modeling of Pb-free solders Surface tension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Moser Z., Gąsior W., Sommer F., Schwitzgebel G., Predel B. (1986) Met. Trans. B 17B: 791CrossRefGoogle Scholar
  2. 2.
    Moser Z., Fitzner K. (1999). Thermochim. Acta 332: 1CrossRefGoogle Scholar
  3. 3.
    J.A.V. Butler, Proc. R. Soc. London CXXXV, 348 (1932)Google Scholar
  4. 4.
    Z. Moser, W. Gąsior, A. Dębski, J. Pstruś, Database of Lead-Free Soldering Materials (Institute of Metallurgy and Materials Science Polish Academy of Sciences, OREKOP, Kraków, 2007)Google Scholar
  5. 5.
    Moser Z., Gąsior W., Pstruś J., Ishida K., Ohnuma I., Kainuma R., Ishihara S., Liu X.J. (2004). Mater. Trans. 45: 652CrossRefGoogle Scholar
  6. 6.
    Hwang J.S. (2005) Lead-Free Implementation and Production, A Manufacturing Guide. McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Gąsior W., Moser Z., Pstruś J. (2001) J. Phase Equilib. 22: 20CrossRefGoogle Scholar
  8. 8.
    Moser Z., Gąsior W., Pstruś J. (2001) J. Phase Equilib. 22: 254CrossRefGoogle Scholar
  9. 9.
    Liu X.J., Inohana Y., Ohnuma I., Kainuma R., Ishida K., Moser Z., Gąsior W, Pstruś J. (2002) J. Electron. Mater 31: 1139CrossRefADSGoogle Scholar
  10. 10.
    Gąsior W., Moser Z., Pstruś J., Krzyzak B., Fitzner K. (2003). J. Phase Equilib. 23: 21Google Scholar
  11. 11.
    Ohnuma I., Liu X.J., Ohtani H., Ishida K. (1998). J. Electron. Mater. 28: 1164CrossRefADSGoogle Scholar
  12. 12.
    Z. Moser, K. Rzyman, A. Dębski, W. Gąsior, Presented at ECCTAE 2005, Eur. Conf. Calorim. Therm. Anal. Environ., Zakopane, Poland (2005)Google Scholar
  13. 13.
    Boom R. (1974). Scr. Metall. 8: 1277CrossRefGoogle Scholar
  14. 14.
    Kleppa O.J. (1955). Acta Met. 3: 255CrossRefGoogle Scholar
  15. 15.
    Ticnor L.B., Bever M.B. (1952). J. Met. 4: 941Google Scholar
  16. 16.
    Gąsior W., Moser Z., Pstruś J., Bukat K., Kisiel R., Sitek J. (2004). J. Phase Equilib. Diffus. 24: 115Google Scholar
  17. 17.
    Moser Z., Gąsior W., Bukat K., Pstruś J., Kisiel R., Ohnuma I., Ishida K. (2006). J. Phase Equilib. Diffus. 27: 133Google Scholar
  18. 18.
    COST Action 531, MC Meeting (25/02/2006) and WG 1-2-3-4-5-6 Meeting (23-24/02/2006), Genoa, ItalyGoogle Scholar
  19. 19.
    Miyazaki M., Mitutani M., Takemoto T., Matsunawa A. (1997). Trans. JWRI 26:81Google Scholar
  20. 20.
    Moser Z., Gąsior W., Pstruś J., Ksiezarek S. (2002). J. Electron. Mater. 31: 1225CrossRefADSGoogle Scholar
  21. 21.
    Z. Moser, W. Gąsior, K. Ishida, I. Ohnuma, X.J. Liu, K. Bukat, J. Pstruś, J. Sitek, R. Kisiel, Experimental wettability studies combined with the related properties from data bases for tin based alloys with silver, copper, bismuth and antimony additions. Presented at TMS 2005, 134th Annual Meeting & Exhibition, San Francisco, California (2005), Final program, p. 212Google Scholar
  22. 22.
    Moser Z., Gąsior W., Bukat K., Pstruś J., Kisiel R., Ohnuma I., Ishida K. (2007). J. Phase Equilib. Diffus. 28: 433CrossRefGoogle Scholar
  23. 23.
    Lopez E.P., Vianco P.T., Rejent J.A. (2005). J. Electron. Mater. 34: 299CrossRefADSGoogle Scholar
  24. 24.
    P. Vianco, The Metal Science of Joining, ed. by M.J. Cieslak, J.H. Perepezko, S. Kang, M.E. Glicksman (TMS, Warrendale, Pennsylvania, 1992), p. 265Google Scholar
  25. 25.
    Ohnuma I., Ishida K., Moser Z., Gąsior W., Bukat K., Pstruś J., Kisiel R., Sitek J. (2006). J. Phase Equilib. Diffus. 27: 245CrossRefGoogle Scholar
  26. 26.
    Takao H., Hasegawa H. (2001). J. Electron. Mater. 30: 1060Google Scholar
  27. 27.
    Z. Moser, P. Sebo, W. Gąsior, P. Svec, J. Pstruś, Wettability Studies of Sn–Ag–Cu–In Liquid Solders and Interaction with Cu Substrate. Presented at Calphad XXXVI, Pennsylvania State University, State College, Pennsylvania (2007), Program and AbstractGoogle Scholar
  28. 28.
    J. Pstruś, Influence of Indium Additions on Wettability of Sn–Zn Alloys (Doctor Thesis, Institute of Metallurgy and Materials, Science Polish Academy of Sciences, Kraków, 2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Institute of Metallurgy and Materials SciencePolish Academy of SciencesKrakowPoland

Personalised recommendations