International Journal of Thermophysics

, Volume 28, Issue 4, pp 1120–1130 | Cite as

Dynamic Viscosity Measurements of Three Natural Gas Mixtures—Comparison against Prediction Models

  • L. I. Langelandsvik
  • S. Solvang
  • M. Rousselet
  • I. N. Metaxa
  • M. J. Assael


New and accurate viscosity measurements of three natural gas mixtures obtained directly at three different locations in the Norwegian gas transport network in the North Sea are presented. The viscosity measurements were performed using a vibrating-wire instrument with an uncertainty of  ± 1%, and covered a wide range of temperatures and pressures (263–303 K and 5.0–25 MPa). The predictive power of various models was also examined in relation to our new viscosity measurements. It was found that one of the Lee–Gonzalez–Eakin variants, as well as the NIST’s SUPERTRAPP scheme, agreed very well with the present measurements. The correlative schemes reported by Schley et al. (Int J Thermophys 25:1623, 2004) and Vesovic–Wakeham (Int J Thermophys 22:415, 2001) were found to deviate significantly from the present measurements.


Measurement Natural gas Prediction Vibrating-wire viscometer Viscosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Assael M.J., Polymatidou S.K., Vesovic V., Wakeham W.A. (1997) High Temp.–High Press. 29, 519CrossRefGoogle Scholar
  2. 2.
    Assael M.J., Polymatidou S.K. (1997) Int. J. Thermophys. 18, 353CrossRefGoogle Scholar
  3. 3.
    Assael M.J., Dalaouti N.K., Vesovic V. (2001) Int. J. Thermophys. 22, 61CrossRefGoogle Scholar
  4. 4.
    Jaeschke M., Schley P. (1996) gwf-Gas/Erdgas 137, 33Google Scholar
  5. 5.
    A.L. Lee, M.H. Gonzalez, B.E. Eakin, J. Petrol. Technol. August, 997 (1966)Google Scholar
  6. 6.
    C. Whitson, M. Brule, Phase Behavior, Monograph vol. 20, Soc. Petrol. Eng. (2000), p. 26Google Scholar
  7. 7.
    F.E. Londono, R.A. Archer, T.A. Blasingame, Simplified Correlations for Hydrocarbon Gas Viscosity and Gas Density – Validation and Correlation of Behavior Using a Large-Scale Database, SPE Gas Technol. Symp., Calgary, Alberta, Canada, Paper No. 75721 (2002)Google Scholar
  8. 8.
    B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw Hill, New York, 2000)Google Scholar
  9. 9.
    M.L. Huber, NIST Standard Reference Database 4 (SUPERTRAPP), Stand. Ref. Data Program, Nat. Inst. Stand. Technol. (NIST), Gaithersburg, Maryland, (2007)Google Scholar
  10. 10.
    Vesovic V. (2001) Int. J. Thermophys. 22, 415CrossRefGoogle Scholar
  11. 11.
    Friend D.G., Ely J.F., Ingham H.J. (1989) J. Phys. Chem. Ref. Data 18, 583ADSCrossRefGoogle Scholar
  12. 12.
    Schley P., Jaeschke M., Küchenmeister C., Vogel E. (2004) Int. J. Thermophys. 25, 1623CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • L. I. Langelandsvik
    • 1
    • 2
  • S. Solvang
    • 2
  • M. Rousselet
    • 3
  • I. N. Metaxa
    • 4
  • M. J. Assael
    • 4
  1. 1.Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Technology DepartmentGassco ASHaugesundNorway
  3. 3.Department of Gas TechnologyPolytec R&D FoundationHaugesundNorway
  4. 4.Thermophysical Properties Laboratory, Chemical Engineering DepartmentAristotle UniversityThessalonikiGreece

Personalised recommendations