Skip to main content
Log in

A Noise Thermometer for Practical Thermometry at Low Temperatures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The application of a magnetic-field-fluctuation thermometer (MFFT) is described for practical thermometry in the low-temperature range. The MFFT inductively measures the magnetic noise generated by Johnson noise currents in a metallic temperature sensor. The temperature of the sensor is deduced from its thermal magnetic noise spectrum by applying the Nyquist theorem, making the thermometer in principle linear over a wide range of temperatures. In this setup, a niobium-based dc SQUID gradiometer detects the magnetic field fluctuations. The gradiometer design optimizes the inductive coupling to the metallic temperature sensor, yet equally ensures sufficient insensitivity to external magnetic interference. In order to obtain a highly sensitive and fast thermometer, the SQUID chip is placed directly onto the surface of the temperature sensor. The compact setup of the gradiometer/temperature sensor unit ensures good conditions for thermal equilibration of the sensor with the temperature to be measured, a factor that becomes increasingly important in the temperature range below 1 K. The first direct comparison measurements of the MFFT with a high-accuracy realization of the Provisional Low Temperature Scale of 2000 (PLTS-2000) are presented. Special emphasis is given to the investigation of the linearity, speed, and accuracy of the MFFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Preston-Thomas H. (1990). Metrologia 27: 3

    Article  ADS  Google Scholar 

  2. BIPM, Procès-Verbaux des Séances du Comité International des Poids et Mesures, (2001), vol. 68, p. 128

  3. Rusby R.L., Durieux M., Reesink A.L., Hudson R.P., Schuster G., Kühne M., Fogle W.E., Soulen R.J., Adams D.E. (2002) . J. Low Temp. Phys. 126: 633

    Article  Google Scholar 

  4. R.L. Rusby, B. Fellmuth, J. Engert, W.E. Fogle, E.D. Adams, L. Pitre, M. Durieux, J. Low Temp. Phys. doi: 10.1007/s10909-007-9502-y (in press)

  5. Engert J., Fellmuth B., Jousten K. (2007). Metrologia 44: 40

    Article  ADS  Google Scholar 

  6. A. Netsch, E. Hassinger, C. Enss, A. Fleischmann, in Low Temp. Phys.: 24th Int. Conf. Low Temp. Phys., AIP Conf. Proc., vol. 850, ed. by Y. Takano, S.P. Hershfield, S.O. Hill, P.J. Hirschfeld, A.M. Goldman, (AIP, New York, 2006), pp. 1593–1594

  7. J. Beyer, D. Drung, A. Kirste, J. Engert, A. Netsch, A. Fleischmann, C. Enss, in ASC 2006 Conf. Proc. IEEE Trans. Appl. Supercond., vol. 17 (2007), Issue 2, Part 1, p. 760

  8. F. Pobell, Matter and Methods at Low Temperatures, 3rd edn. (Springer, Berlin, 2007), ISBN 978-3-540-46356-6 and references therein

  9. Varpula T., Poutanen T. (1984). J. Appl. Phys. 55: 4015

    Article  ADS  Google Scholar 

  10. Roth B.J. (1998). J. Appl. Phys. 83: 635

    Article  ADS  Google Scholar 

  11. Wellstood F.C., Urbina C., Clarke J. (1994). Phys. Rev. B49: 5942

    ADS  Google Scholar 

  12. J. Clarke, A.I. Braginski (eds.), SQUID Handbook, vol. 1 (WILEY-VCH, Weinheim, 2004), ISBN 3-527-40229-2

  13. Harding J.T., Zimmermann J.E. (1968). Phys. Lett. 27A: 670

    ADS  Google Scholar 

  14. G. Schuster, A. Hoffmann, D. Hechtfischer, in Realisation of the temperature scale PLTS-2000 at PTB (PTB-Bericht, Braunschweig PTB-ThEx-21, 2001), ISBN 3-89701-742-3

  15. D. Drung, M. Mück, in SQUID Electronics ed. by J. Clarke, A.I. Braginski. SQUID Handbook, vol. 1 (WILEY-VCH, Weinheim, 2004), pp. 127-170, ISBN 3-527-40229-2

  16. Wellstood F.C., Urbina C., Clarke J. (1987). Appl. Phys. Lett. 50: 772

    Article  ADS  Google Scholar 

  17. Drung D., Hinnrichs C., Barthelmess H.-J. (2006). Supercond. Sci. Technol. 19: S235

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jost Engert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engert, J., Beyer, J., Drung, D. et al. A Noise Thermometer for Practical Thermometry at Low Temperatures. Int J Thermophys 28, 1800–1811 (2007). https://doi.org/10.1007/s10765-007-0269-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0269-9

Keywords

Navigation