Advertisement

International Journal of Thermophysics

, Volume 28, Issue 6, pp 1789–1799 | Cite as

Acoustic Thermometry Results from 271 to 552 K

  • D. C. Ripple
  • G. F. Strouse
  • M. R. Moldover
Article

Abstract

The NIST acoustic thermometer determines the thermodynamic temperature from measurements of ratios of the speed of sound of argon in a nearly spherical cavity. We report recent results for TT 90 on 12 isotherms spanning the range 271–552 K. (T is the thermodynamic temperature and T 90 is the temperature on the International Temperature Scale of 1990.) The results are in excellent agreement with recent acoustic thermometry results reported by Benedetto et al. in the range from 273 to 380 K and with our previously reported results at 303, 430, and 505 K. The combined data sets are sufficiently redundant and sufficiently distributed over the temperature range to support a re-determination of the reference function for standard platinum resistance thermometers for a future temperature scale. The isotherms were analyzed using several methods; the TT 90 results and related uncertainties are insensitive to the method chosen. The thermal expansion of the stainless-steel resonator was deduced from the frequencies of the microwave resonances of the cavity. To clearly identify two nearly degenerate eigenmodes in our nearly axially symmetric resonator, two phased coupling probes were used to control the azimuthal angle of the microwave excitation.

Keywords

Acoustic Argon ITS-90 Primary thermometer Thermodynamic temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hartmann, D.R. Taubert, J. Fischer, in Proc. TEMPMEKO 2001, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, 2002), pp. 377–382Google Scholar
  2. 2.
    G.F. Strouse, D.R. Defibaugh, M.R. Moldover, D.C. Ripple, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (AIP Conf Proc., Melville, New York, 2003), pp. 31–36Google Scholar
  3. 3.
    Benedetto G., Gavioso R.M., Spagnolo R., Marcarino P., Merlone A. (2004) Metrologia 41, 74CrossRefADSGoogle Scholar
  4. 4.
    Moldover M.R., Trusler J.P.M., Edwards T.J., Mehl J.B., Davis R.S. (1988) J. Res. Natl. Bur. Stand. 93, 85Google Scholar
  5. 5.
    Moldover M.R., Mehl J.B., Greenspan M. (1986) J. Acoust. Soc. Am. 79, 253CrossRefADSGoogle Scholar
  6. 6.
    Moldover M.R., Boyes S.J., Meyer C.W., Goodwin A.R.H. (1999) J. Res. Natl. Inst. Stand. Technol. (U.S.) 104, 11Google Scholar
  7. 7.
    D.C. Ripple, D.R. Defibaugh, K.A. Gillis, M.R. Moldover, in Proc. TEMPMEKO ’99, ed. by J.F. Dubbeldam, M.J. de Groot (NMi, Delft, the Netherlands, 1999), pp. 418–423Google Scholar
  8. 8.
    D.C. Ripple, D.R. Defibaugh, M.R. Moldover, G.F. Strouse, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (AIP Conf. Proc., Melville, New York, 2003), pp. 25–30Google Scholar
  9. 9.
    Mehl J.B., Moldover M.R., Pitre L. (2004) Metrologia 41, 295CrossRefADSGoogle Scholar
  10. 10.
    J.R. Davis, (ed.), Stainless Steels (ASM Int., Materials Park, Ohio, 1994), p. 491Google Scholar
  11. 11.
    Boyes S.J. (1994) Chem. Phys. Lett. 221, 467CrossRefADSGoogle Scholar
  12. 12.
    Edsinger R.E., Schooley J.F. (1989) Metrologia 26, 95CrossRefADSGoogle Scholar
  13. 13.
    Schooley J.F. (1990) J. Res. Natl. Inst. Stand. Technol. (U.S.) 95, 255, and references thereinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • D. C. Ripple
    • 1
  • G. F. Strouse
    • 1
  • M. R. Moldover
    • 1
  1. 1.Process Measurements DivisionNational Institute of Standards and TechnologyGaitherburgUSA

Personalised recommendations