Advertisement

International Journal of Thermophysics

, Volume 28, Issue 3, pp 968–979 | Cite as

Development of Nanoscale Temperature Measurement Technique Using Near-field Fluorescence

  • T. Jigami
  • M. Kobayashi
  • Y. Taguchi
  • Y. Nagasaka
Article

Abstract

A nanoscale thermal system design, especially for the precise measurement of the temperature distribution in microfabricated devices using novel nanomaterials such as carbon nanotubes and fullerene has become increasingly important along with the development of nanotechnology. A new approach has been proposed toward an optical nanoscale temperature measurement method using near-field optics and fluorescence thermometry, namely, Fluor-NOTN (fluorescent near-field optics thermal nanoscopy). The topographic image and temperature dependence of a fluorescently modified sample, excited by near-field light, are simultaneously monitored. In this article, the temperature dependence of Cy3 fluorescent dye is verified near room temperature (298–308 K). A Cy3 mono-dispersed sample of a permalloy (Ni81Fe19) wire heater, 500 nm in width and 100 nm in thickness, is designed and fabricated. A localized temperature gradient of ΔT = 4 K within a submicron distance from the heater was successfully detected by near-field fluorescence with 100 nm spatial resolution.

Keywords

Fluorescence Nanoscale Near-field light Spatial resolution Thermometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avouris P., Appenzeller J., Martel R., Wind S.J. (2003). Proc. IEEE 91: 1772 CrossRefGoogle Scholar
  2. Babincova M., Sourivong P., Leszczynska D., Babinsec P. (2003). Phys. Medica 19: 213 Google Scholar
  3. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R. (2003). J. Appl. Phys. 93: 793 CrossRefADSGoogle Scholar
  4. Pop E., Goodson K.E. (2004). Proc. Intersociety Conf. 1: 1 Google Scholar
  5. Shi L., Majumdar A. (2002). J. Heat Transfer 124: 329 CrossRefGoogle Scholar
  6. Gao Y., Bando Y., Liu Z., Goldberg D. (2003). Appl. Phys. Lett. 83: 2913 CrossRefADSGoogle Scholar
  7. Ross D., Gaitan M., Locascio L.E. (2001). Anal. Chem. 73: 4117 CrossRefGoogle Scholar
  8. Keuren E.V., Littlejohn D., Schrof W. (2003). J. Phys. D: Appl. Phys. 37: 2938 CrossRefGoogle Scholar
  9. Kobayashi, M., Horiguchi, Y., Taguchi, Y., Saiki, T., Nagasaka, Y.: Proc. Eur. Conf. Thermophys. Props. (2005)Google Scholar
  10. Amao Y., Okura I. (2000). Analusis 28: 847 CrossRefGoogle Scholar
  11. Kaneto K., Hasegawa H. (1997). Proc. SPIE—The Int. Soc. Opt. Eng. 3142: 216 ADSGoogle Scholar
  12. Ohtsu M. (1998). Near-field Nano/Atom Optics and Technology. Springer, Hong Kong, 15–17 Google Scholar
  13. Lakowicz J.R. (1999). Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum Pubs, New York, 10–11 Google Scholar
  14. Bejan A. (1993). Heat Transfer. John Wiley & Sons Inc., New York, 120–125 Google Scholar
  15. Moreira B.G., You Y., Behlke M.A., Owczarzy R. (2005). Biochem. Bioph. Res. Co. 327: 473 CrossRefGoogle Scholar
  16. Constantinou P., Nicklee T., Hedley D.W., Damaskinos S., Wilson B.C. (2005). IEEE J. Selected Topics Quant. Elect. 11: 766 CrossRefGoogle Scholar
  17. Lakkaraju A., Rahman Y.E., Dubinsky J.M. (2002). J. Bio. Chem. 277: 15085 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • T. Jigami
    • 1
  • M. Kobayashi
    • 1
  • Y. Taguchi
    • 2
  • Y. Nagasaka
    • 2
  1. 1.School of Integrated Design EngineeringKeio UniversityYokohamaJapan
  2. 2.Department of System Design EngineeringKeio UniversityYokohamaJapan

Personalised recommendations