International Journal of Thermophysics

, Volume 28, Issue 3, pp 865–875 | Cite as

Molecular Heteroconjugation Equilibria in (n-Butylamine + Acetic Acid) Systems in Binary (Dimethyl Sulfoxide + 1,4-Dioxane) Solvent Mixtures

  • M. Czaja
  • M. Makowski
  • M. Szociński
  • K. Darowicki
  • L. Chmurzyński

The acidity constants of molecular acid, K a (HA), cationic acid, K a (BH+), as well as the equilibrium constants of anionic homoconjugation, \(K_{\rm AHA^{-}}\) , cationic homoconjugation, \(K_{\rm BHB^+}\) , and molecular heteroconjugation, KAHB, have been determined in (n-butylamine + acetic acid) systems without proton transfer in binary [dimethyl sulfoxide (DMSO) + 1,4-dioxane (D)] solvent mixtures. The constants were determined by using the potentiometric titration method at a fixed ionic strength. It is concluded that the molecular heteroconjugation constants in the mixed solvent systems studied are linearly related to the 1,4-dioxane content. Furthermore, in the (acid + base) systems without proton transfer, the direction of titration (direct B + HA or reverse HA + B) has been found to affect the precision of determination of reliable values of molecular heteroconjugation constants. Moreover, it has been found that the relative dielectric constants of the solvent mixtures studied change linearly as a function of solvent composition, as well as solvent components do not show interactions of solvent–solvent type.


acetic acid acid–base equilibria binary solvent mixtures dimethyl sulfoxide n-butylamine potentiometric titration method 1,4-dioxane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zundel G. (1994) J. Mol. Struct. 322: 33CrossRefADSGoogle Scholar
  2. 2.
    Scholtz J.M., Marqusee J.M., Baldwin R., York E.J., Steward J.M., Santoro M., Bolen D.W.(1991) Proc. Natl. Acad. Sci. (USA) 88: 2854CrossRefADSGoogle Scholar
  3. 3.
    Rabold A., Bauer R., Zundel G.(1995) J. Phys. Chem. 99:1889CrossRefGoogle Scholar
  4. 4.
    Bartl F., Deckers-Hebestreit G., Altendorf K., Zundel G. (1995) Biophys. J. 68:104CrossRefADSGoogle Scholar
  5. 5.
    Hiromi K.(1960) Bull. Soc. Chim. Fr. 33:1251CrossRefGoogle Scholar
  6. 6.
    Roses M., Rafols C., Bosch E.(1993) Am. Chem. Soc. 65:2294Google Scholar
  7. 7.
    Bosch E., Rafols C., Roses M.(1995) Anal. Chim. Acta 302:109CrossRefGoogle Scholar
  8. 8.
    Rafols C., Roses M., Bosch E.(1993) Anal. Chim. Acta 280:75CrossRefGoogle Scholar
  9. 9.
    Papadopoulos N., Avranas A.(1991) J. Solution Chem. 20:293CrossRefGoogle Scholar
  10. 10.
    A. Avranas, V. Terzoglou, and N. Papadopoulos, Collect. Czech. Chem. Commun. 1613(1992).Google Scholar
  11. 11.
    Bates R.G.(1964) Determination of pH Theory and Practice. Wiley, New York.Google Scholar
  12. 12.
    Niazi M.S.K., Shah S.S., Ali J., Khan M.Z.I.(1990) J. Solution Chem. 19:623CrossRefGoogle Scholar
  13. 13.
    Leśniewski B., Pawlak Z., Przybyszewski B. (1984) J. Chem. Soc. Faraday Trans. I 80:1769CrossRefGoogle Scholar
  14. 14.
    Helle J.C., Schard R.(1972) Anal. Chim. Acta 60:197CrossRefGoogle Scholar
  15. 15.
    Wróbel R., Chmurzyński L.(2000) Anal. Chim. Acta 405:303CrossRefGoogle Scholar
  16. 16.
    Wróbel R., Kaczmarczyk E., Chmurzyński L.(1999) J. Chem. Thermodyn. 31:1CrossRefGoogle Scholar
  17. 17.
    Wróbel R., Makowski M., Czaja M., Chmurzyński L. (2001) Pol. J. Chem. 75:1767Google Scholar
  18. 18.
    P. J. R. Bryant and A. W. H.Wardrop, J. Chem. Soc. 895 (1957).Google Scholar
  19. 19.
    Czaja M., Makowski M., Chmurzyński L. (2006) J. Chem. Thermodyn. 38:606CrossRefGoogle Scholar
  20. 20.
    Czaja M., Bagińska K., Kozak A., Makowski M., Chmurzyński L.(2005) J. Chem. Thermodyn. 37:810CrossRefGoogle Scholar
  21. 21.
    A. I. Vogel, Preparatyka organiczna (WNT Warszawa,1984), p. 226.Google Scholar
  22. 22.
    Zielińska J., Makowski M., Maj K., Liwo A., Chmurzyński L.(1999) Anal. Chim. Acta 401:317CrossRefGoogle Scholar
  23. 23.
    Kozak A., Czaja M., Makowski M., Jacewicz D., D̦browska A., Chmurzyński L. (2003) J. Chem. Thermodyn. 35:77CrossRefGoogle Scholar
  24. 24.
    Czaja M., Kozak A., Makowski M., Chmurzyński L.(2005) J. Chem. Thermodyn. 37:783CrossRefGoogle Scholar
  25. 25.
    J. Kostrowicki and A. Liwo, Parts I and II, Comput. Chem. 8:91 and 101 (1984).Google Scholar
  26. 26.
    Kostrowicki J., Liwo A.(1990) Talanta 87:645CrossRefGoogle Scholar
  27. 227.
    Kostrowicki J., Liwo A. (1987) Comput. Chem. 11:195CrossRefGoogle Scholar
  28. 28.
    Kolthoff I.M., Chantooni M.K. Jr., Bhowmik S.(1968) J. Am. Chem. Soc. 90:23CrossRefGoogle Scholar
  29. 29.
    C. Reichardt, Solvent Effects in Organic Chemistry (Verlag-Chemie, New York, 1979), p. 407.Google Scholar
  30. 30.
    Wells C.F.(1978) J. Chem. Soc. Faraday Trans. I 74:636CrossRefGoogle Scholar
  31. 31.
    Coetzee J.F.(1967) Progr. Phys. Org. Chem. 4:45CrossRefGoogle Scholar
  32. 32.
    Czaja M., Bagińska K., Kozak A., Makowski M., Chmurzyński L.(2005) J. Chem. Thermodyn. 37:778CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • M. Czaja
    • 1
  • M. Makowski
    • 1
  • M. Szociński
    • 2
  • K. Darowicki
    • 2
  • L. Chmurzyński
    • 1
  1. 1.Department of General ChemistryUniversity of GdańskGdańskPoland
  2. 2.Department of Electrochemistry Corrosion and Materials EngineeringGdańsk University of TechnologyGdańskPoland

Personalised recommendations