Advertisement

International Journal of Thermophysics

, Volume 28, Issue 2, pp 544–555 | Cite as

Normalized Free Energy and Normalized Entropy Applied to Some Lambda (λ) Transitions

  • Peter Love
Article

The λ-anomaly occurs for a system that can undergo a boson – fermion thermodynamic equilibrium. It is shown that a λ-transition figure can be interpreted in terms of the normalized Gibbs–Helmholtz equation, the Maxwell–Boltzmann energy distribution function, and properties of the statistics of the relevant species. There are three variations of a “λ-transition” curve. These are: (A) the classical λ curve, (B) a saw-tooth line shape that is characteristic of the Bardeen–Cooper–Schrieffer theory of superconductivity, and (C) a single line δ type figure. The low temperature He-4 transition, and Type II superconductor transitions are typical of the line shape A. Type I superconductors typically have type B line shapes. The line shapes for variations A and C result from classical thermodynamic equilibria. The type B line shape occurs in systems that do not have a classical thermodynamic equilibrium at the superconducting transition. Analysis of type B line shapes provides interesting concepts and data for some low- and high-temperature superconductors. Several applications and physical property consequences of these line shapes are discussed.

Keywords

heat capacity lambda anomaly magnetic heat capacity superconductivity superfluidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilks J. (1967) The Properties of Liquid and Solid Helium. Clarendon Press, Oxford, p. 3.Google Scholar
  2. 2.
    P. Love, Physical Chemistry Abstracts, 224th ACS National Meeting (2002), p. 309.Google Scholar
  3. 3.
    Alexandrov A.S., Ranninger J. (1992) . Solid State Commun. 81:403CrossRefGoogle Scholar
  4. 4.
    R. Baierlein, Thermal Physics (Cambridge, Cambridge, 2001), pp. 33–37.Google Scholar
  5. 5.
    Stowe K. (1984) Introduction to Statistical Mechanics and Thermodynamics. Wiley, New York, pp. 435–437.Google Scholar
  6. 6.
    Wilks J. (1967) The Properties of Liquid and Solid Helium. Clarendon Press, Oxford, pp. 293–294.Google Scholar
  7. 7.
    Schnelle W., Braun E., Broicher H., Weiss H., Geus H., Ruppel S., Galffy M., Braunisch W., Waldorf A., Seidler F., Wohlleben D. (1989) . Physica C 161:123CrossRefADSGoogle Scholar
  8. 8.
    de Fontaine D., Fries S.G., Inden G., Miodownik P., Schmid-Fetzer R., Chen S.L. (1995) . Calphad 19:499CrossRefGoogle Scholar
  9. 9.
    Phillips P., Dalidovich D. (2003) . Science 302:243CrossRefADSGoogle Scholar
  10. 10.
    Bouquet F., Fisher R.A., Phillips N.E., Hinks D.G., Jorgensen J.D. (2001) . Phys. Rev. Lett. 87:047001CrossRefADSGoogle Scholar
  11. 11.
    Ashcroft N.W., Mermin N.D. (1976) Solid State Physics. Saunders, Philadelphia, p. 38.Google Scholar
  12. 12.
    Ashcroft N.W., Mermin N.D. (1976) Solid State Physics. Saunders, Philadelphia, p. 729.Google Scholar
  13. 13.
    J. S. Blakemore, Solid State Physics, 2nd Ed. (Cambridge, Cambridge, 1985), pp. 270,271.Google Scholar
  14. 14.
    Ashcroft N.W., Mermin N.D. (1976) Solid State Physics. Saunders, Philadelphia, p. 734.Google Scholar
  15. 15.
    Callen H.B. (1962) Thermodynamics. Wiley, New York, p. 88.Google Scholar
  16. 16.
    R. Baierlein, Thermal Physics (Cambridge, Cambridge, 2001), pp. 200, 201.Google Scholar
  17. 17.
    Stowe K. (1984) Introduction to Statistical Mechanics and Thermodynamics. Wiley, New York, p. 407.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Connecticut at StamfordStamfordU.S.A.

Personalised recommendations