International Journal of Thermophysics

, Volume 28, Issue 2, pp 697–710 | Cite as

Thermophysical Properties and Normal Spectral Emittance of Iridium up to 3500 K

  • C. Cagran
  • G. Pottlacher

An ohmic pulse-heating experiment together with radiometry and μs-photopolarimetry is deployed at the Institute of Experimental Physics, Graz University of Technology, to obtain temperature-dependent thermophysical properties of conducting samples in the solid and molten states. This experimental setup has been used within the present work to gather data for solid and liquid iridium. Results for both thermophysical properties, as well as the normal spectral emittance obtained at a wavelength of 684.5 nm up to 3500 K are reported. The newly obtained values for iridium are presented in graphical and tabular form and compared to available literature data. The uncertainties for all reported properties are stated and it follows that, considering these expanded uncertainties, the recent data are in very good agreement with literature sources. Mutually motivated by these good results and by the scarce (if any) data available for the liquid state, the thermal conductivity and thermal diffusivity of liquid iridium are estimated by means of the Wiedemann–Franz law.


ellipsometry iridium normal spectral emittance pulse-heating thermal conductivity thermal diffusivity thermophysical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, (CRC Press, Boca Raton, Florida, 2005).Google Scholar
  2. 2.
    Arblaster W.J. (1989). Platinum Metals Rev. 33:14Google Scholar
  3. 3.
    Arblaster W.J. (1995). Platinum Metals Rev. 39:164Google Scholar
  4. 4.
    Gallob R., Jäger H., Pottlacher G. (1986). Int. J. Thermophys. 7:139CrossRefGoogle Scholar
  5. 5.
    Wilthan B., Cagran C., Brunner C., Pottlacher G. (2004). Thermochim. Acta 415:47CrossRefGoogle Scholar
  6. 6.
    Seifter A., Sachsenhofer F., Pottlacher G. (2002). Int. J. Thermophys. 23:1267CrossRefGoogle Scholar
  7. 7.
    Cagran C., Wilthan B., Pottlacher G. (2004). Int. J. Thermophys. 25:1551CrossRefGoogle Scholar
  8. 8.
    Bedford E.R., Bonnier G., Maas H., Pavese F. (1996). Metrologia 33:133CrossRefADSGoogle Scholar
  9. 9.
    Arblaster W.J. (1995). Calphad 19: 365CrossRefGoogle Scholar
  10. 10.
    McClure L.J., Boboridis K., Cezairliyan A. (1999). Int. J. Thermophys. 20:1137CrossRefGoogle Scholar
  11. 11.
    R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (American Society for Metals, Metals Park, Ohio, UMI, Reprinted 1990).Google Scholar
  12. 12.
    S. A. Kats, Candidate Thesis (Institute of High Temperatures, Moscow, 1978).Google Scholar
  13. 13.
    Gathers R.G., Shaner W.J., Hixson S.R., Young A.D. (1979). High Temp.-High Press. 11:653Google Scholar
  14. 14.
    Martynyuk M.M., Tsapkov I.V. (1974). Phys. Met. Metallogr. 37:40Google Scholar
  15. 15.
    Lebedev V.S., Savvatimskii I.A., Smirnov Yu.B. (1972). Zh. Tekh. Fiz. 42:1752Google Scholar
  16. 16.
    Dinsdale T.A. (1991). Calphad 15:317CrossRefGoogle Scholar
  17. 17.
    Wimber T.R. (1976). J. Appl. Phys. 47:5115CrossRefADSGoogle Scholar
  18. 18.
    Ishikawa T., Paradis P.-F., Fujii R., Saita Y., Yoda S. (2005). Int. J. Thermophys. 26:893CrossRefGoogle Scholar
  19. 19.
    Ishikawa T., Paradis P.-F., Itami T., Yoda S. (2005). Meas. Sci. Technol. 16:443CrossRefADSGoogle Scholar
  20. 20.
    V. E. Zinovyev, in Metals at High Temperatures: Standard Handbook of Properties, V. P. Itkin, ed. (Hemisphere, New York, 1990).Google Scholar
  21. 21.
    Flippov P.L. (1973). Int. J. Heat Mass Transfer 16:865CrossRefGoogle Scholar
  22. 22.
    Geld P.V., Zinovyev E.V. (1972). Tethn Vyx Temp. 10:656Google Scholar
  23. 23.
    K. C. Mills, B. J. Monaghan, and B. J. Keene, Thermal Conductivities of Liquid Metals – Part 1: Pure Metals, NPL Report CMMT(A) 53 (1997).Google Scholar
  24. 24.
    Vlasov V.B., Taluts G.S., Zinov’ev V.E., Korenovskii A.N., Polykova P.V. (1992). Phys. Met. Metallogr. 74:371Google Scholar
  25. 25.
    Otter C., Pottlacher G., Jäger H. (1996). Int. J. Thermophys. 17:987CrossRefGoogle Scholar
  26. 26.
    Expression of the Uncertainty of Measurement in Calibration, EA-4/02,–02ny.pdf Google Scholar
  27. 27.
    B. Wilthan, Candidate Thesis (Technical University Graz, Austria 2005), Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsGraz University of TechnologyGrazAustria

Personalised recommendations