Advertisement

International Journal of Thermophysics

, Volume 28, Issue 2, pp 566–580 | Cite as

Use of a High-Temperature Integrating Sphere Reflectometer for Surface-Temperature Measurements

  • Leonard M. Hanssen
  • Claus P. Cagran
  • Alexander V. Prokhorov
  • Sergey N. Mekhontsev
  • Vladimir B. Khromchenko
Article

The National Institute of Standards and Technology (NIST) has developed a new facility for the characterization of the infrared spectral emissivity of samples between 150 and 1,000°C. For accurate measurement of the sample surface temperatures above 150°C, the system employs a high-temperature reflectometer to obtain the surface temperature of the sample. This technique is especially useful for samples that have significant temperature gradients due to the thermal conductivity of the sample and the heating mechanism used. The sample temperature is obtained through two measurements: (a) an indirect sample emissivity measurement with an integrating sphere reflectometer and (b) a relative radiance measurement (at the same wavelengths as in (a)) of the sample as compared to a blackbody source. The results are combined with a knowledge of the blackbody temperature and Planck’s law to obtain the sample temperature. The reflectometer’s integrating sphere is a custom design that accommodates the sample and heater to allow reflectance measurements at temperature. The sphere measures the hemispherical-near- normal (8°) reflectance factor of the sample compared relative to a previously calibrated room-temperature reference sample. The reflectometer technique of sample temperature measurement is evaluated with several samples of varying reflectance. Temperature results are compared with values simultaneously obtained from embedded thermocouples and temperature-drop calculations using a knowledge of the sample’s thermal conductivity.

Keywords

emittance hemispherical-directional reflectance factor non-contact temperature Pt-Rh radiometer SiC sphere reflectometer surface temperature 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Hanssen, S. G. Kaplan, and S. N. Mekhontsev, In B. Fellmuth, J. Seidel, and G. Scholz, eds. Proc. 8th Int. Symp. Temp. Thermal Meas. Ind. Sci. (TEMPMEKO 2001), Berlin, (2001), pp. 265–270.Google Scholar
  2. 2.
    Hanssen L.M., Mekhontsev S.N., and Khromchenko V.B. (2004). Proc. SPIE 5405:1CrossRefADSGoogle Scholar
  3. 3.
    M. Batuello, F. Lanza, and T. Ricolfi, In Proc. 2nd Int. Symp. Temp. Thermal Meas. Ind. Sci. (IMEKO TC12), Suhl, Germany, (1984), pp. 125–130.Google Scholar
  4. 4.
    Batuello M. and Ricolfi T. (1989). High Temp.—High Press. 21:303Google Scholar
  5. 5.
    A. V. Prokhorov, S. N. Mekhontsev, and L. M. Hanssen, In B. Fellmuth, J. Seidel, and G. Scholz, eds. Proc. 8th Int. Symp. Temp. Thermal Meas. Ind. Sci. (TEMPMEKO 2001), Berlin, (2001), pp. 277–282.Google Scholar
  6. 6.
    Prokhorov A.V., Mekhontsev S.N., and Hanssen L.M. (2003). Appl. Optics 40:3832ADSGoogle Scholar
  7. 7.
    C. P. Cagran, L. M. Hanssen, M. Noorma, A. V. Gura, and S. N. Mekhontsev, Int. J. Thermophys. (in press).Google Scholar
  8. 8.
    CIE, International Lighting Vocabulary (CIE Publication No. 17.4, Geneva, 1987).Google Scholar
  9. 9.
    L. M. Hanssen and K. A. Snail, in Handbook of Vibrational Spectroscopy, Vol. 2, J. M. Chalmers and P. R. Griffiths, eds. (John Wiley & Sons, Ltd., Chichester, United Kingdom, 2002), pp. 1175–1192.Google Scholar
  10. 10.
    Snail K.A. and Hanssen L.M. (1989). Appl. Optics 28:1793ADSCrossRefGoogle Scholar
  11. 11.
    M. E. Nadal, Optical Technology Division, National Institute of Standards and Technology, Gaithersburg, MD: http://physics.nist.gov/Divisions/Div844/facilities/specphoto/specphoto.htmlGoogle Scholar
  12. 12.
    L. Hanssen, A. Prokhorov, V. Khromchenko, and S. Mekhontsev, In D. Zvizdic, ed. Proc. 9th Int. Symp. Temp. Thermal Meas. Ind. Sci. (TEMPMEKO 2004), Dubrovnik, Croatia, (2004), pp. 539–544.Google Scholar
  13. 13.
    Certain commercial equipment, instruments, or materials are identified in this paper to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.Google Scholar
  14. 14.
    Slavin M.J. and Quinn G.D. (1986). Int. J. High Technol. Ceram. 2:47CrossRefGoogle Scholar
  15. 15.
    Ceramics Division (852), National Institute of Standards and Technology, Gaithersburg, MD: http://www.ceramics.nist.gov/Google Scholar
  16. 16.
    Incropera F.P. and DeWitt D.P. (1996). Fundamentals of Heat and Mass Transfer, 4th Ed. John Wiley & Sons, New YorkGoogle Scholar
  17. 17.
    The Platinum Metals Group (PGM) Online Database: http://www.platinummetalsreview.com/jmpgm/index.jspGoogle Scholar
  18. 18.
    Y. S. Touloukian and D.P. DeWitt, eds. Thermophysical Properties of Matter, Vol. 8, Thermal Radiative Properties—Nonmetallic Solids (IFI/Plenum, New York-Washington, 1972).Google Scholar
  19. 19.
    Y. S. Touloukian and D. P. DeWitt, eds. Thermophysical Properties of Matter, Vol. 7, Thermal Radiative Properties—Metallic Elements and Solids (IFI/Plenum, New York-Washington, 1970).Google Scholar
  20. 20.
    CODATA International Recommended Values of the Fundamental Physical Constants, Online Database: http://physics.nist.gov/cuu/Constants/Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Leonard M. Hanssen
    • 1
  • Claus P. Cagran
    • 1
  • Alexander V. Prokhorov
    • 1
  • Sergey N. Mekhontsev
    • 1
  • Vladimir B. Khromchenko
    • 1
  1. 1.Optical Technology DivisionNational Institute of Standards and TechnologyGaithersburgU.S.A.

Personalised recommendations